EPA Region 5 Records Ctr. 279335

REMEDIAL INVESTIGATION/FEASIBILITY STUDY CONRAIL SITE ELKHART, INDIANA

REMEDIAL INVESTIGATION REPORT VOLUME 2 OF 2

ARCS CONTRACT NO. 68-W8-0086 WORK ASSIGNMENT NO. 01-5L7Y

March 31, 1994

Prepared for:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
Region V
Office of Superfund
77 West Jackson Boulevard
Chicago, Illinois 60604

ecology and environment, inc.

111 WEST JACKSON BLVD., CHICAGO, ILLINOIS 60604, TEL. 312-663-9415 International Specialists in the Environment

recycled paper

Contail RLFS RI Report Table of Contents Rev. 0 March 31, 1994

TABLE OF CONTENTS VOLUME 2

Appendix		Page
В	PHASE II TECHNICAL MEMORANDUM	B-1
C	PHASE III LEAD-SCREEN AUGER SAMPLING RESULTS	C-1
D	PHASE III SOIL BORING LOGS AND MONITORING WELL BORING LOGS	D-1
E	PHASE III ANALYTICAL RESULTS	E-1
F	PHASE I SOIL BORING LOGS AND MONITORING WELL BORING LOGS	F-1
G	CONTAMINANT MIGRATION MODELING METHODS	G-1
Н	HUMAN HEALTH RISK TABLES	H-1

0003

1.000

Courail RI-FS RI Report Appendix B Rev. 0 March 31, 1994

APPENDIX B PHASE II TECHNICAL MEMORANDUM

•

PHASE II REMEDIAL INVESTIGATION CONRAIL RI/FS ELKHART, INDIANA

TECHNICAL MEMORANDUM

WORK ASSIGNMENT NUMBER 01 - 5L7Y

July 22, 1992

Prepared for:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
ARCS Region V
Contract 68-W8-0086
77 West Jackson Boulevard
Chicago, Illinois 60604

ecology and environment, inc.

111 WEST JACKSON BLVD., CHICAGO, ILLINOIS 60604, TEL. 312-663-9415. International Specialists in the Environment

recycled paper

ecology and environment

0005

TABLE OF CONTENTS

Section		<u>Page</u>
1	INTRODUCTION	1-1
2	PHASE II FIELD INVESTIGATION PROCEDURES	2-1
	2.1 LEAD-SCREEN AUGER SAMPLING	2-1
	2.2 SOIL SAMPLING	
	2.3 MONITORING WELL INSTALLATION	
	2.4 MONITORING WELL SURVEYING AND	
	GROUNDWATER SAMPLING	2-6
	2.5 SLUG TESTS	2.9
	2.6 INVESTIGATION-DERIVED WASTE	2-9
3	PHYSICAL RESULTS AND DISCUSSION	3-1
	3.1 SITE GEOLOGY	3-1
	3.2 SITE HYDROGEOLOGY	3-2
	3.3 SLUG TESTS	3-4
4	ANALYTICAL RESULTS AND DISCUSSION	4-1
	4.1 LEAD-SCREEN AUGER SAMPLING	4-1
	4.1.1 CCI4 Results	4-1
	4.1.2 TCE Results	4-5
	4.2 SOIL BORINGS - SUBSURFACE SOILS	4-10
	4.3 MONITORING WELLS - GROUNDWATER	4-12
5	CONCLUSIONS AND DATA GAPS	5-1
	5.1 CONCLUSIONS	5-1
	5.2 DATA GAPS	5-2
6	REFERENCES	6-1

 $\mathbf{G} \geq \mathbf{f}$

Table of Contents (Cont.)

<u>Appendix</u>		Page
A B C	LEAD-SCREEN AUGER SAMPLING RESULTS	A-1 B-1 C-1
D E	GEOLOGIC MONITORING WELL BORING LOGS	D-1 E-1
<u>Plates</u> (Pla	tes follow report and appendices)	
1	SOIL BORING LOCATIONS AND SELECTED ORGANIC ANALYTICAL RESULTS	
2	CCL4 CONCENTRATION CONTOURS - CROSS SECTION B-B', (CONCENTRATION IN $\mu \mathrm{g/L}$)	
3	TCE CONCENTRATION CONTOURS - CROSS SECTIONS C-C', D-D', AND E-E' (CONCENTRATION IN $\mu g/L$)	
4	VOLATILE ORGANIC CHEMICAL RESULTS FOR PHASE II GROUNDWATER SAMPLES (CONCENTRATION IN µg/L)	

0007

LIST OF TABLES

<u>Table</u>		Page
2-1	Phase II Soil Boring Samples	2-10
2-2	Contract Laboratory Program Target Compound List Quantitation Limits	2-12
2-3	Contract Laboratory Program Target Analyte List Quantitation Limits	2-17
2-4	Phase II Monitoring Wells	2-18
2-5	Groundwater Elevations April 27 and 28, 1992	2-20
2-6	Phase II Groundwater Samples	2-23
3-1	Vertical Hydraulic Gradients	3-5
3-2	Phase II Slug Test Results	3-7
4-1	Summary of Concentrations of Organics and Metals Detected in Subsurface Soil Samples	4-15
4-2	Summary of Concentrations of Organics and Metals Detected in Groundwater Samples	4-18
4-3	Comparison of Groundwater Analytical Results for Carbon Tetrachloride and Trichloroethene from LSA Borings and Monitoring Wells	4-20

LIST OF ILLUSTRATIONS

Figure		Page
2-1	Lead-Screen Auger Boring Location Map	2-26
2-2	Phase I and II Monitoring Well Locations Map	2-27
3-1	Geologic Cross Section A-A'	3-8
3-2	Groundwater Table Surface Map	3-9
3-3	Intermediate Potentiometric Surface Map	3-10
3-4	Deep Potentiometric Surface Map	3-11
4-1	Section Location - B-B' Map	4-22
4-2	Section Locations - C-C', D-D', and E-E' Map	4-23

0009

1. INTRODUCTION

This technical memorandum summarizes the procedures and results of lead-screen auger (LSA) sampling, soil sampling, groundwater monitoring and sampling, and aquifer characteristics testing conducted by Ecology and Environment, Inc. (E & E), as part of the Phase II Remedial Investigation (RI) at the Conrail site in Elkhart, Indiana. The objectives of the Phase II investigation were to preliminarily identify and define the potential source(s) of groundwater contamination in the study area; further define the nature and extent of the groundwater contaminant plumes; further define hydrologic characteristics of the aquifer(s) of concern that may influence contaminant migration patterns; and collect data necessary to support the evaluation of remedial alternatives for the Feasibility Study (FS). The technical memorandum integrates existing data, including the Phase I results presented in technical memoranda and the report titled "Preliminary Evaluation of Phase I RI Results and Interim Remedial Alternatives for the Conrail/County Road 1 RI/FS" (E & E April 1990; revised June 1990), with new information gathered during the Phase II field investigation activities.

To meet the Phase II objectives, the sampling and monitoring well installation program was implemented in accordance with the United States Environmental Protection Agency (EPA)-approved Work Plan (WP), Field Sampling Plan (FSP), and Quality Assurance Project Plan (QAPP) developed by E & E for the site (E & E 1991a, b, c). Modifications to these plans necessitated by field conditions actually encountered were discussed with and approved by EPA prior to implementation. Section 2 describes the procedures E & E used during the Phase II field investigation for LSA groundwater sampling and analysis, surface and subsurface soil sampling, monitoring well installation and water level measurement.

1-1

ZF3073.D7838

groundwater sampling, and aquifer characteristics testing. Section 3 presents a summary of the physical results and with a brief discussion of these results. Section 4 presents and discusses the analytical results. Section 5 presents conclusions and data gaps, and Section 6 presents references.

0011

2. PHASE II FIELD INVESTIGATION PROCEDURES

2.1 LEAD-SCREEN AUGER SAMPLING

From July 17 to November 6, 1991, E & E subcontracted Bergerson-Caswell, Inc. (BC), of Maple Plain, Minnesota, to perform drilling and related activities for the Conrail Phase II field investigation. The first part of this work, through September 25, 1991, consisted of LSA drilling and groundwater sampling. Use of this technique allowed sampling of the groundwater within the plume(s) at discrete depth intervals to determine the vertical extent of contamination, and provided information on the optimum depths for monitoring well screened intervals. The technique also was used to provide information bearing on the location and extent of potential source areas. A total of 30 LSA borings was completed by BC under the direction of E & E. The locations of the LSA borings are presented in Figure 2-1. Samples analyzed at the field laboratory included 310 groundwater samples from discrete lead-screen intervals, together with 135 duplicate samples, field blanks, and trip blanks. Samples were analyzed using the purge and trap method with a gas chromatograph (GC) for carbon tetrachloride (CCI_a), trichloroethene (TCE), and 1,1,1-trichloroethane (TCA). Chloroform was added to the compounds analyzed for after the start of the LSA investigation. Results of these analyses are discussed in Section 4 and presented in Appendix A.

The procedures used for the LSA technique are in accordance with the FSP. At each LSA boring location, BC used a CME75 drill rig to advance 4-%-inch hollow-stem augers, coupled with a slotted lead auger, by conventional drilling methods. A stainless steel plug was inserted into the end of the lead auger to prevent heaving sands from entering the auger. The augers were advanced at 5-, 10-, or 20-foot depth intervals. At

2-1

752073 D7839

0012

and management

these discrete depths, the 5-foot LSA was sealed from the flights above it with a downhole packer system. The packer system was constructed of a sliding head inflatable packer that expended radially as pneumatic pressure was applied. The expandable packer gland was mounted on a 2-inch inside diameter (ID) mandrel pipe. This packer assembly was attached to the end of a 2-inch ID stainless steel riser pipe and positioned downhole just above the LSA. When in position, the packer was inflated with nitrogen, creating an effective seal over the entire length of the packer gland element. This seal isolated the LSA and thus minimized the volume of purge water generated. With the packer inflated. the level of standing water in the riser was measured with a graduated stainless steel chalked tape so that the volume of water in the LSA section plus the 2-inch riser could be calculated. A minimum of three standing volumes of water was purged from the LSA and riser with a 1.75-inch outside diameter (OD) Keck™ helical rotor-type submersible pump positioned inside the LSA. Between each volume, the purge water was tested for pH, conductivity, and temperature. Purging was considered complete when all three parameters had stabilized for three consecutive readings (± 0.25 pH units, ± 50 µmhos/cm, and ± 0.5 °F). If the LSA plus riser pumped dry, 15 minutes of recharge was allowed and then pumping was resumed. If the LSA plus riser pumped dry three times, the interval was considered to be purged and the sample was collected as soon as sufficient recharge had occurred. Following purging, the groundwater sample was collected directly from the submersible pump's discharge hose into two 40-mL glass volatile organic analysis (VOA) vials with zero headspace. Each vial was labeled with boring number, depth of sample, and date/time of collection. Samples were cooled immediately on ice and transported to the field laboratory for CCI4, TCE, and TCA analyses. A daily trip blank was prepared by the chemist from deionized water, transported on-site, and analyzed at the end of each day.

After each sample was collected, the pump, packer, and riser were removed from the augers and decontaminated with a steam cleaner. In addition, a solution of Liquinox¹⁸ and potable water, followed by a potable water rinse, was run through the pump between samples to decontaminate the internal elements of the pump and discharge hose. At least one rinsate blank sample of potable water run through the pump was collected daily and analyzed at the field laboratory to monitor internal decontamination of the pump. In addition, samples collected directly from the potable water source were analyzed occasion-

2-2

ZF3073.D7838

ally throughout the lead-screen program to ensure that this water remained free from contamination. The source of potable water was the Henry R. Ferrettie/Baugo Creek County Park, location of the E & E field office.

Following completion of each LSA boring, the stainless steel plug was removed from the auger and the borehole abandoned by tremie-sealing with Enviroplug bentonite grout as the augers were withdrawn. Drill cuttings were sealed in 55-gallon drums and bulked later in roll-off boxes. All purge and pump decontamination water was also collected for disposal (see Section 2.5, Investigation-Derived Waste).

At each LSA boring location, drilling and sampling continued downward through the aquifer to the top of bedrock, until a minimum of two consecutive samples (minimum 20 feet) showed non-detects for CCI4, TCE, and TCA or until the maximum achievable depth of 148 feet below ground surface (BGS) was reached.

To evaluate its effectiveness, the LSA investigation was initiated immediately adjacent to existing monitoring wells MW02S and MW02D, where Phase I groundwater results revealed elevated concentrations of both TCE and CCI₄. At this location, groundwater samples were collected from the LSA at depths similar to the screened interval of the monitoring wells. A comparison of GC results on the two sets of samples was similar, so the decision was made to proceed with the LSA program as outlined in the WP. The ultimate number and final locations of LSA borings were based mainly on field GC results and were decided upon by the Field Team Leader (FTL), the Site Manager (SM), and the Remedial Project Manager (RPM).

To minimize equipment cross-contamination of samples, borings were first drilled in locations of non-detected or low groundwater contamination, namely upgradient and far downgradient of suspected source areas based on Phase I analytical results. Based on the known groundwater flow direction also determined from Phase I data, successive borings were completed in areas of progressively higher levels of groundwater contamination. In a few cases, this pattern was disrupted when higher than expected concentrations were encountered, but in general the pattern was followed to the extent possible.

2.2 SOIL SAMPLING

Soil sample collection procedures are in accordance with the FSP. Following preliminary identification of source locations with the LSA sampling technique, soil borings

2-3

7F3073.D7838

were drilled and soil samples collected in these areas (Plate 1) to define the nature and preliminary extent of source contamination. From September 16 to October 8, 1991, 20 soil borings ranging from 6 feet to 44.5 feet BGS were completed. Drilling was conducted by BC with the CME75 rig and 4-1/4-inch hollow-stem augers. Soil samples were collected every 2.5 feet with a 3-inch OD, 24-inch long split-spoon. Each split-spoon soil sample was visually classified by an E & E geologist, who maintained a detailed log of sample depth, blow count, recovery, soil description, and, if any, organic vapor analyzer (OVA) readings. Soil boring logs are presented in Appendix B. Between samples, the splitspoons were decontaminated with Liquinox™ solution, isopropanol, and distilled water. In most cases, each borehole was advanced to just below the water table, or until no further OVA readings were obtained from the soil samples. In a few cases, soil borings were advanced to greater depths to determine whether a clay layer was present. Between borings, the augers were decontaminated with a steam cleaner. After each boring, the hole was tremie-grouted to the surface with Enviroplug™ bentonite grout as the augers were withdrawn. Drill cuttings were sealed in 55-gallon drums and bulked later in roll-off boxes for future disposal.

The OVA screening results, visual observations, and LSA results were the primary criteria for selection of three depth-specific samples from soil borings for submission to Contract Laboratory Program (CLP) laboratories for analysis. Table 2-1 summarizes soil boring samples selected for specific CLP analyses. The quantitation limits for the CLP Target Compound List and Target Analyte List are presented in Tables 2-2 and 2-3, respectively. Soil samples were not submitted for analysis from each soil boring drilled. Results of these analyses are discussed in Section 4 and presented in Appendix C.

2.3 MONITORING WELL INSTALLATION

01.0

Monitoring well installation was performed in accordance with the FSP. From October 5 to November 5, 1991, 32 new monitoring wells were installed in the study area based on the preliminary location of source areas identified through LSA sampling. Typically, the new monitoring wells were installed immediately upgradient, downgradient, and within preliminarily identified source areas to verify these source locations and to provide groundwater quality data necessary for the Risk Assessment (RA) and FS. Other new wells, including some screened at different levels at existing Phase I well nests, were

positioned to further delineate the vertical extent of contamination and to refine understanding of the groundwater flow regime in deeper portions of the aquifer. Locations of Phase II monitoring wells are presented in Figure 2-2.

Monitoring well borings were advanced to shallow, intermediate, deep, and top of bedrock depths by conventional hollow-stem auger or mud rotary drilling techniques. Soil samples for subsurface stratigraphic description were collected from monitoring well borings using a 24-inch-long, 2-inch or 3-inch OD split-spoon sampler at 5-foot depth intervals, generally beginning at or near the ground surface. The geologist maintained a detailed log of sample depth, blow count, recovery, soil description, and, where appropriate, OVA readings. Monitoring well boring logs are presented in Appendix D. Samples from screened intervals and low permeability strata were saved in sealed glass jars and stored for possible future use, as needed. After being described by the geologist, the rest of the split-spoon samples were containerized with the cuttings for later disposal.

All monitoring wells were constructed with 2-inch ID stainless steel flush-jointed riser pipe and screens. Screens were 10 feet long with 0.01-inch slots of continuous wire-wound design. A filter pack of 100% silica sand was created in the annular space surrounding each screen to approximately 2 feet above the screen. In wells where the top of the screen was located above the water table, a minimum 2-foot bentonite pellet seal was placed above the filter pack and hydrated with potable water. In wells screened below the water table, this sealing procedure was not possible because of clumping and bridging of the pellets. In these wells, a 2-foot seal of the thickest bentonite slurry that could be tremied was placed above the filter pack. Both types of seals were allowed to stand until an adequate seal formed. Then bentonite grout was tremied from the seal up to within 2 to 3 feet of the surface. In the case of the hollow-stem auger technique, this was done as the augers were withdrawn. In the case of the mud rotary drill hole, the grout was tremied from the seal upward, displacing the drilling mud to the surface where it was drummed for disposal. A 5-foot protective steel cover with a locking cap was placed over each well and cemented in place to provide security.

Table 2-4 presents the specifications of the 32 Phase II monitoring wells. Thirteen shallow monitoring wells were installed and screened at depths to intersect the water table or the area immediately below it. Shallow wells ranged in depth from 17 feet to 31 feet BGS. Eleven intermediate monitoring wells were installed and screened at depths ranging

from 47 feet to 76 feet BGS. Intermediate well depths were determined based on LSA results. Four deep monitoring wells were installed at depths ranging from 101 feet to 125 feet BGS, also controlled by LSA results. Additionally, four top of bedrock monitoring wells were installed at depths ranging from 145 feet to 169 feet BGS. Monitoring well MW08BR is screened immediately above a thick clay/silt layer believed to overlie bedrock. No confining layer was encountered during drilling and thus none of the Phase II wells are double cased.

Between samples, the split-spoons were cleaned with potable water using a brush. Drill rigs, augers, rods, and ancillary equipment were decontaminated with a steam cleaner between borings, as were all screens and risers before installation. Drill cuttings and drilling mud were sealed in 55-gallon drums for later disposal.

Completed wells were allowed to stand for a least 24 hours to allow the grout and concrete pad to set up before the wells were developed. The first step of development at each well was to measure the standing water level so that the purge volume could be determined. An airlift system was used to purge the water for development. Each volume of water was tested for pH, conductivity, and temperature, and examined for relative turbidity/clarity. Purging continued until pH, conductivity, temperature, and relative clarity had stabilized, and the well was producing at the maximum achievable rate. In many cases, this required purging from five and 10 well volumes. Water-measurement and airlift equipment was decontaminated with a high-pressure steam cleaner between uses. All purge and decontamination water was containerized for later disposal.

2.4 MONITORING WELL SURVEYING AND GROUNDWATER SAMPLING

All monitoring well surveying and groundwater sampling procedures are in accordance with the FSP. From December 2 to December 6, 1991, the elevations of the top of the inside casing (TOIC) of the Phase II monitoring wells were surveyed in feet above mean sea level (MSL), and 31 Phase I and 32 Phase II wells were sampled. Access to Phase I wells MW05S, MW05D, MW06, and MW09 was refused by the property owner, so these wells were not included in this round of sampling.

At each Phase II monitoring well, the TOIC point from which water level measurements were to be taken was surveyed by E & E with respect to a U.S. Geological Survey benchmark to a vertical accuracy of \pm 0.01 foot (see Table 2-5). The TOIC elevations

were used to convert standing water depth measurements into elevations above MSL (Table 2-5). The horizontal location of each well has also been determined to an accuracy of approximately \pm 10 feet through serial photographs and a scale map of the study area.

Groundwater sampling was performed concurrently with well elevation surveying activities. Before sampling, water levels were measured in all wells with a chalked graduated stainless steel tape; measurements were made both for hydrologic studies and purge volume calculations prior to sampling. Water levels were measured as depth below TOIC. Static water volumes were calculated using the following formula:

$$V = Tr^{2} (0.163)$$

where:

V = Static volume of well in gallons;

T = Depth of water in well, measured in feet;

r = Inside radius of well casing in inches; and

0.163 = A constant conversion factor.

A maximum of three static water volumes was purged from each well prior to sample collection to ensure that a representative groundwater sample was collected. Bottom-loading stainless steel bailers were used to purge all shallow and some intermediate wells. A Keckth submersible pump was used to purge the remaining intermediate wells and all deep and bedrock wells. At the end of each purge volume, the water was tested for pH, conductivity, and temperature, and relative turbidity/clarity was noted. After three volumes were purged and after stabilization of these parameters, the sample was collected. In the few cases where the wells did not recharge quickly enough to purge three volumes, the wells were purged dry, and then the sample was collected as soon as there was sufficient recharge for an adequate sample volume.

All groundwater samples, with the exception of the sample collected from monitoring well MW18S, were collected with bottom-loading stainless steel bailers. Sample MW18S was collected from a pitcher pump because aboveground damage to the well did not allow a bailer or pump to be placed into the well to collect a sample. During sample collection, care was taken to not agitate the sample water and thus lose volatile components. VOA sample portions were always collected first if other CLP parameters were being analyzed for.

Bailers were decontaminated before and between use with a high-pressure steam cleaner, sprayed with isopropanol/alcohol, rinsed with deionized water, and wrapped in aluminum foil until the next use. The outside of the Keck[®] pump and discharge hose were cleaned with the steam cleaner, and the inside decontaminated with Liquinox[®] and deionized water.

Groundwater samples were collected for analysis from each monitoring well. Table 2-6 is a summary of the analysis program for groundwater samples. The quantitation limits for the CLP Target Compound List and Target Analyte List are presented in Tables 2-2 and 2-3, respectively. Results of these analyses are discussed in Section 4 and presented in Appendix E. Samples collected for VOA analysis were preserved with hydrochloric acid and ice. Samples collected for dissolved metals analysis were filtered with a Masterflex™ pump coupled with an in-line, 0.45-μm filter and then preserved with nitric acid. Sulfuric acid was used to preserve samples scheduled for chemical oxygen demand (COD), total organic carbon (TOC), oil and grease, and nitrate/nitrite analyses, and ice was used to preserve samples for biochemical oxygen demand (BOD), total dissolved solids (TDS), total suspended solids (TSS), and alkalinity analyses. All samples were labeled, packaged, iced, and shipped in accordance with appropriate procedures stated in the project plans.

Duplicate groundwater samples were collected simultaneously with investigative samples in equal volumes, with the same sampling equipment, and into identical containers. Duplicates were preserved and handled in the same manner as all other groundwater samples. Field blanks were prepared from contaminant-free deionized water that was routed through decontaminated sampling equipment, including filtration apparatus when appropriate. Field blanks were containerized and handled in the same manner as all other groundwater samples. Duplicate and field blank samples were collected at the rate of one per every 10 or fewer groundwater samples. Trip blanks were prepared by E & E, transported on-site by the sampling team, and shipped with the remainder of the samples to the appropriate laboratory at the rate of one per shipping container containing VOA samples per day.

2.5 SLUG TESTS

Slug tests were conducted on 12 Phase II groundwater monitoring wells. The tests were conducted to obtain in situ measurements of the hydraulic conductivity of the aquifer materials present adjacent to the screened interval of the wells. All tests conducted were rising head tests, meaning that after the water was displaced, the data were collected as the water level rose to equilibrium.

The slug used to displace water was a 1-inch OD, 3-foot-long PVC pipe filled with silica sand, which was attached to a stainless steel cable. An Oil Recovery System²² (ORS) data logger, equipped with a 15-psi pressure transducer and interfaced with a printer, was used to record time-dependent head pressure at the test locations. Upon removal of the slug from the well, data were collected until the water level returned to its static condition. Typically, data collection lasted between 10 seconds and 10 minutes.

2.6 INVESTIGATION-DERIVED WASTE

All drift cuttings from LSA, soil, and monitoring well borings were stored in 55-gallon drums until they could be removed from the drilling locations, usually within one to two days. The drums were then loaded onto a truck by a BC employee using a Bobcat²⁰ and taken to E & E field office at Baugo Creek Park, where they were emptied into roll-off boxes, pending future bulk disposal. The drums were then reused in the same manner. Currently, all roll-off boxes have been properly disposed of at a State of Indiana-licensed landfill.

Used drilling mud from the mud rotary drill holes was put in 55-gallon drums and stored separately from the cuttings. This mud was later dewatered to the extent possible with a pump by E & E and consolidated into the fewest number of drums possible. All drilling mud has been properly disposed of at a State of Indiana-licensed landfill.

All purge water from LSA groundwater sampling, monitoring well development, monitoring well sampling, and all decontamination water was collected into a 500-gallon tank at each location and trucked to the E & E field office. The 500-gallon tank then was pumped into a 5,000-gallon tanker, tested, and properly disposed of at the Elkhart.

* Wastewater Treatment Plant.

	Table 2-1 PHASE II SOIL BORING SAMPLES							
Boring	Depth (feet) VOA ABN Pest./PCB Metals TOC							
	5 - 6.5	а	a					
B20	7.5 - 9.5	а	a					
	10 - 12	a	а.					
	2.5 - 4.5	a	a					
B21	5 - 7	а	a					
	10 - 12	a	a					
	2.5 - 4.5	Da	Da					
B22	5 - 7	а	а					
B22	7.5 - 7.9			Da	Db	Dc		
	10 - 12	а	a					
	2.5 - 4.5	a	а		-			
B23	5 - 7	а	a					
•	10 - 12	а	a					
	5 - 7	đ	đ		. 			
824	20 - 22	d	đ	·•				
	22.5 - 24.5	đ	đ					
	5 - 7	d	d					
B25	20 - 22	đ	đ					
	23.5 - 25.5	đ	d					
	2.5 - 4.5	d	d					
B26	22.5 - 24.5	d	d	d	b	С		
	27 - 29	d	đ					
B27	10 - 12	đ	d	-				
	0 - 2	Dd	Dd					
B28	2.5 - 4.5	đ	đ					
·	15 - 17	d	, đ	d	b	С		

	Table 2-1							
	PHASE II SOIL BORING SAMPLES							
Boring	Oepth (feet) VOA ABN Pest./PCB Metals TOC							
829	0 - 2	đ	đ	-	_	-		
832	0 - 2	đ	đ					
	0 - 2	đ	đ					
B 35	7.5 - 9.5	đ	đ	••				
	12.5 - 14.5	d	đ			-		
	2.5 - 4 5	ď	đ	-				
836	5 - 7	đ	d		-	_		
	12.5 - 14.5	đ	d	đ	ь	С		
	5 - 7	d	đ			-		
B 37	15 - 17	đ	đ					
	17.5 - 19.5	d	d		_			
	2.5 - 4.5	đ	đ					
838	10 - 12	d	đ					
	15 - 17	đ	d	-				
	5 - 7	Dd	Dd					
839	15 - 17	đ	đ					
	20 - 22	đ	đ			-		
Totals Analyse: Duplicat	t Analyses	42 4	42	4	4	4		

Key:

- a Analysis performed by University of Iowa, University Hygenic Lab.
- b Analysis performed by Northern Laboratories.
- c Analysis performed by American Analytical and Technical Services.
- d Analysis performed by Clayton Environmental Consultants.
- D. Duplicate sample also submitted for analysis.
- Sample was not submitted for analysis.

Table 2-2

CONTRACT LABORATORY PROGRAM TARGET COMPOUND LIST VOLATILE QUANTITATION LIMITS

Compound	CAS .	Water	Soll Sediment
Chloromethane	74-87-3	10 ug/L	10 µg/kg
Bromomethane	74-83-9	10	10
Vinyl chloride	75-01-4	10	10
Chloroethane	75-00-3	:0	10
Methylene chloride	75-09-2	10	10
Acetone	67-64-1	10	10
Carbon disulfide	75-15-0	10	15
1.1-dichloroethene	75-35-4	10	10
1.1-dichloroethane	75-34-3	10	10
1,2-dichloroethene (total)	540-59-0	10	10
Chloroform	67-66-3	10	. 10
1,2-dichloroethane	197-06-2	10	10
2-butanone (MEK)	78-93-3	10	10
1,1,1-trichloroethane	71-55-6	10	10
Carbon tetrachloride	56-23-5	:0	13
Vinyl acetate	108-05-4	10	10
Bromodichloromethene	75-27-4	: :0	:0
1.2-dichloropropane	: 76-87-5	:0	. 10
cis-1,3-dichloropropene	10061-01-5	10	10
Trichloroethene	79-01-6	10	10
Dibromochloromethane	124-46-1	10	10
1,1,2-trichloroethane	79-00-5	10	20
Benzene	71-43-2	9	: 10
Trans-1,3-dichloropropene	10061-02-6	10	. 10 .
Bromoferm	75-25-2	10	10
i-Methyl-2-pentanone	108-19-1	15	10
2-Hexanone	591-78-6	10	10
Tetrachloroethene	127-18-4	. 10	10
Toluene	108-88-3	:0	10 .
1,1,2,2-tetrachloroethane	79-34-5	10	10

Table 2-2 (Cont.)

CONTRACT LABORATORY PROGRAM TARGET COMPOUND LIST VOLATILE QUARTITATION LIMITS

Compound	TAS •	2020K	Soil Sediment
Chlorobenzene	108-90-7	:: >g/L	:) wq/kç
Ethyl benzese	100-41-4	:5	:0
Styrene	100-47-5	10	10
Eylones (tetal)	1330-20-7	19	10

Table 2-2 (Cont.)

CONTRACT LABORATORY PROGRAM TARGET COMPOUND LIST SEMIVOLATILE QUANTITATION LIMITS

Compound	CAS •	Water	Sail Sediment
Phenol	108-95-2	10 #g/L	330 ug/kg
bis(2-Chloroethyl) ether	121-44-4	10	330
2-Chlorophenol	95-57-8	10	330
1,3-Dichlorobenzene	541-73-1	10	330
1.4-Dichlorobensene	106-46-7	10	330
Benzyl Alcohol	100-51-6	10	330
1.2-Dichlorobenzene	95-50-1	10	330
2-Methylphenoi	35-48-7	19	330
bis(2-Chloroisopropyl) ether	108-60-1	10	330
4-Methylphenol	106-44-5	10	330
N-Witroso-di-n-dipropylamine:	621-64-7	10	330
Hexachloroethane	67-72-1	10	330
Nitrobenzene	98-95-3	10	330
Isophorone	78-59-1	10	330
2-Nitrophenol	88-75-5	10	330
2.4-Dimethylphenol	:05-67-9	10	330
Bengoic Acid	65-85-0	25	800
bis(2-Chloroethoxy)methane	111-91-1	10	330
2,4-Dichlorophenal	120-83-2	1 10	330
1,2,4-Trichlorobenzene	120-82-1	10	330
Naphthalene	91-20-3	10	330
4-Chloroaniline	106-47-8	10	330
Nexachlorobutadiene	87-68-3	10	330
4-Chloro-3-methylphenol	59-50-7	10	330
2-Methylnaphthalene	21-57-6	: :0	330
Hexachlorocyclopentadiene	77-47-4	1 :0	330
2,4,6-Trichlorophenol	98-06-2	10	: 330
2,4,5-Trichlorophenol	35-95-4	25	900
2-Chloronaphthalene	91-58-7	' 10	330
2-Nitroaniline	38-74-4	ı 25	800
Dimethylphthalate	131-11-3	10	330
Acenaphthylene	208-96-8	10	330

1200

ecology and cavironmen:

Table 2-2 (Cont.)

CONTRACT LABORATORY PROGRAM TABBET COMPOUND LIST SERIVOLATILE QUARTITATION LIMITS

Compound	: : : : : : : : : : : : : : : : : : :	Hater	. Soll Sediment
Passicscringto-9, 2	-36-20-2 [10 mg/L	330 sā\pā
3-Fitrosniline	39-09-2	25	800
Acesaphthese	93-32-9	19	330
2.4-Dimitrophenol	51-28-5	25	800
4-Bitrophenel	100-02-7	25	800
Dibenzofuran	132-64-9	10	330
2.4-Dimitrotolyene .	121-14-2	10	330
Diethylphthelate	14-66-7	19	330
4-Chlorophemyl-phonyl ether	1005-72-3 .	:0	330
Flyerene	96-73-7	10	330
4-Witresnilps	:00-01-6	25	100
4.6-Dimitro-i-methylphenoi	534-52-1	25	800
N-mitrosodiphenylamine	16-30-5	: 3	330
4-Bromophomy 1-phomy lether	101-55-3	: 9	330
Nezach lo robestene	113-74-1	10	330
Pontach: or ophonol	37-86-5	25	800
Phononthrone	35-01-8	10	230
Anthrecene	120-12-7	10	320
Di-m-butyiphthelete	14-74-2	: 9	330
Pluoranthene	106-44-0	10	339
Pyrono	129-00-0	10	330
Buty lben sy labthalate	15-60-7	10	230
3,3'-Dichlorebenzidine	91-94-1	10	330
Sonze (a) anthracene	56-55-3	:0	330
Chrysone	218-01-9	10	330
bist 2-Ethylhemyliphthelate	117-61-7	19 1	230
Di-n-oct; iphthelate	117-84-0	10	330
Benzo: blf:uoranthene	205-99-2	:0	330
Senzo(k) fluoranthene	107-08-9	:0	330
Benzola : py rene	50-32-8	10	330
Indemo(1.1.3-cd:pyrene	193-39-5	10	330
Dibenzote.h:esthracene	53-70-3	10	330
Senso(q,h,1)perylene	191-24-2	:0	330

Table 2-2 (Cont.)

CONTRACT LABORATORY PROGRAM TARGET COMPOUND LIST PESTICIDE AND PCB QUANTITATION LIMITS

Compound	CAS =	Water	Soil Sediment
alpha-BHC	. 319-84-6	0.05 #g/L	1.7 pg/kg
beta-BHC	1 319-85-7	0.05	1.7
delta-BHC	1 319-86-8	0.05	1.7
gamma-BHC (Lindane)	58-89-9	2.05	1.7
Heptschlor	76-44-8	0.05	1.7
Aldrin	309-00-2	0.05	1.7
Heptschlor epoxide	1024-57-3	0.05	1.7
Endosulfan I	959-98-8	0.05	1.7
Dieldrin	60-57-1	C.10	3.3
4,4'-DDE	72-55-9	0.10	2.3
Endrin	72-20-8	9.10	3.3
Endosulfan II	33213-65-9	. C.10	3.3
4,4'-000	72-54-8	9.10	3.3
Endosulfan sulfate	1031-07-6	0.10	3.3
4,4'-DDT	50-29-3	3.10	3.3
Methoxychlor (Mariate)	72-43-5	0.5	17
Endrin ketone	53494-70-5	2.10	3.3
alpha-Chlordene	5103-71-9	0.5	1.7
gamma-chlordane	1 5103-74-2] 3.5	1.7
Toxephene	8001-35-2	5.0	1 170
Aroclor-1016	112674-11-2	1.0	33
Areclor-1221	11104-28-2	2.0	67
Aroclor-1232	11141-16-5	1.0	33
Aroclor-1242	53469-21-9	1.0	33
Aroclor-1248	112672-29-6	1.0	33
Aroclor-1254	11097-69-1	1.0	33
Aroclor-1260	.11096-82-5	1.0	33

7838:1

Table 2-3

CONTRACT LABORATORY PROGRAM TARGET ARALITE LIST QUARTITATION LIMITS

Compound	Procedure .	Weter	5011 Sedi me nt
Alveraus	:07	200 _3/L	ið n g/kg
YULTBOUL	Furnace	<u> 6</u> 0	12
Arsonic	Furnace	. 5	2
Bertup	:c p	200	10
Boryllium	ICP .	5	1
Cadmius	:c r	•	1
Celcium	:cp	5000	1000
Chtoning	: 57	::	2
Cobelt	107	50	10
Copper	:CF	25	5
Iron	:::	190	20
Load	furnace	3	0.6
Magnesius	:02	5000	1000
Manganese	ICP	15	
Hercury	Cold Taper	9.2	0.2
Bickel	ICF	10	
Potessium	[CP	5000	. 1000
Selenium	Futnece	5	:
Silver	:07	: 5	:
Sedium	:C7	5000	1000
Thellium	Purnece	10	2
Vanedi wa	I CP	50	10
Zinc	ICP	20	4

7838:1

	Table 2-4						
	PHASE II MONITORING WELLS						
Well Number	Boring Depth Drilling (feet below Date (feet) Method ground surface) Comple						
MW02BR	169	MR	158.9 - 168.9	10/20/91			
MW08BR	145	MR	126 - 136	10/31/91			
MW27S	20	нѕ	8 - 18	10/05/91			
MW271	56	HS	43.1 - 53.1	10/17/91			
MW28S	20	нѕ	8.5 - 18.5	10/05/91			
MW28I	55	нѕ	43 - 53	10/18/91			
MW29S	20	HS	8 - 18	10/05/91			
MW291	50	нѕ	35.3 - 45.3	10/09/91			
MW30S	20	нѕ	8 - 18	10/06/91			
MW30I	55	HS	42.7 - 52.7	10/06/91			
MW30D	107	HS	94.7 - 104.7	10/20/91			
MW30BR	149	MR	137 - 147	10/16/91			
MW31S	20	нѕ	8.5 - 18.5	10/07/91			
MW31I	53	HS	42 - 52	10/18/91			
MW32S	30	HS	18 - 28	10/15/91			
MW32I	51.5	нѕ	40 - 50	10/15/91			
MW33S	27 .	HS	16.5 - 26.5	10/16/91			
MW33I	47	нѕ	35 - 45	10/16/91			
MW34I	50.5	нѕ	40 - 50	10/19/91			
MW35S	30.5	HS	20 - 30	10/19/91			
MW361	57	нѕ	45 - 55	10/21/91			
MW37S	23.5	нѕ	12 - 22	10/22/91			
MW37D	101	MR	90 - 100	10/29/91			
MW38S	23	нѕ	11 - 21	10/22/91			
MW38D	103	HS	90 - 100	10/31/91			
MW39	31	нѕ	20 - 30	10/28/91			

Table 2-4 PHASE II MONITORING WELLS						
Well Boring Depth Drilling (feet below Dete Mumber (feet) Method ground surface) Completed						
MW40	31	нѕ	20 - 30	10/28/91		
MW41	76	HS	65 - 75	10/28/91		
MW421	52	HS	40.1 - 50.1	10/30/91		
MW43S	17	HS	6 - 16	10/30/91		
MW43BR	158.5	MR	146.5 - 156.5	11/03/91		
MW44D	125	MR	115 - 125	11/05/91		

Key:

MR Mud rotary.

Y. . .

HS Hollow-stem auger.

Table 2-5					
GROUNDWATER ELEVATIONS APRIL 27 AND 28, 1992					
Well ID	Top of Inner Casing Elevation Depth to (feet above Water mean sea level) (feet)		Water Level Elevation (feet above mean sea level)		
MW01	740.87	13.48	727.39		
MW02S	742.44	13.99	728.45		
MW02D	742.30	13.91	728.39		
MW02BR	742.53	14.09	728.44		
MW03	738.80	8.78	730.02		
MW04S	740.80	16.87	723.93		
MW04D	741.24	17.44	723.80		
MW05S	734.86	NM			
MW05D	734.13	NM			
MW06	740.18	NM			
MW07	731.64	13.04	718.60		
MW08S	734.60	15.73	718.87		
MW08D	734.61	15.86	718.75		
MW08BR	734.79	16.02	718.77		
еомм	740.43	NM			
MW10S	728.70	11.21	717.49		
MW10D	728.26	7.65	720.61		
MW11	739.50	DRY	_		
MW11D	739.28	16.55	722.73		
MW12	741.59	11.04	730.55		
MW135	750.20	11.92	738.28		
MW13D	750.50	12.21	738.29		
MW14	740.87	6.11	734.76		
MW15	742.44	· 5.09	737.35		
MW16	743.51	5.09	738.42		

Table 2-5						
	GROUNDWATER ELEVATIONS APRIL 27 AND 28, 1992					
Well ID	Top of Inner Casing Elevation (feet above mean see level)	Depth to Water (feet)	Water Lovel Elevation (feet above meen see level)			
MW18	747.18	5.69	741.49			
MW195	752.30	13.12	739.18			
MW19D	752.37	1 3 .13	739.24			
MW20S	748.41	12.84	735.57			
MW200	748.65	12.61	736.04			
MW21S	754.83	13.91	740.92			
MW21D	754.87	14.06	740.81			
MW23S	741.82	8.18	733.64			
MW23D	742.29	9.49	732.80			
MW24	745.12	10.19	734.93			
MW25	743.72	9.33	734.39			
MW26	752.02	15.29	736.73			
MW275	751.87	11.09	740.78			
MW271	752.13	11.78	740.35			
MW28S	750.83	11.77	739.06			
MW281	750.91	12.09	738.82			
MW29S	751.77	10.89	740.88			
MW291	752.37	11.50	740.87			
MW30S	748.13	9.04	739.09			
MW301	748.18	9.76	738.42			
MW30D	748.09	9.67	738.42			
MW308R	747.94	9.53	738.41			
MW315	751.45	10.89	740.56			
MW311	751.82	11.30	740.52			
MW325	746.99	6.89	740.10			

Table 2-5						
GROUNDWATER ELEVATIONS APRIL 27 AND 28, 1992						
Well ID	Top of Inner Casing Elevation (feet above mean sea level)	Water Level Elevation (feet above mean see level)				
MW321	746.93	6.94	739.99			
MW33S	745.40	7.37	738.03			
MW331	745.31	7.55	737.76			
MW341	744.33	9.14	735.19			
MW35	748.50	7.62	740.88			
MW361	747.04	8.07	738.97			
MW37S	741.47	16.17	725.30			
MW37D	741.36	16.03	725.33			
MW38S	737.15	15.36	721.79			
MW38D	736.84	15.05	721.79			
MW39	752.88	13.63	739.25			
MW40	753.40	14.24	739.16			
MW41D	741.55	7.44	734.11			
MW421	742.19	10.30	731.89			
MW43S	728.92	7.53	721.39			
MW43BR	728.60	9.03	719.57			
MW44D	739.71	16.62	723.09			
RIVER	736.21	20.28	715.93			

Key:

NM Not measured -- Not determined

Table 2-6							
	PHASE II GROUNDWATER SAMPLES						
Menitoring Well	Date Sampled	VOA	ABN	Total Metals	SAS*		
MW01	12/03/91	a		-			
MW02S	12/05/91	a	a	b	сĐ		
MW2D	12/05/91	a					
MW02BR	12/05/91	3					
MW03	12/03/91	a					
MW04S	12/02/91	а					
MW04D	12/03/91	a					
MW05S	NA_	NA	NA	NA	NA		
MW05D	NA	NA	NA	NA	NA		
MW06	NA	NA	NA	NA	NA		
MW07	12/03/91	_ a					
MWO8S	12/04/91						
MW08D	12/04/91	<u>.</u>					
MW08BR	12/04/91	<u> </u>					
eowm	NA NA	NA	NA	NA			
MW10S	12/02/91	_ Os					
MW100	12/02/91	<u> </u>		<u></u> :			
MW115	12/02/91	a		'			
MW11D	12/02/91						
MW115	12/02/91	a	<u></u>		-		
MW012	12/04/91	<u>a</u>					
MW013S	12/02/91	<u> </u>					
MW13D	12/02/91		-	_			
MW14	12/04/91	<u> </u>	<u></u> .	-			
MW15	12/04/91	a					
MW16	12/04/91	_ a		-			
MW18	12/06/91	a		-	-		

Table 2-6						
PHASE II GROUNDWATER SAMPLES						
Monitoring Well	Date Sampled	VOA	ABN	Total Metals	SAS*	
MW19S	12/04/91	aD	-	-		
MW19D	12/04/91	а				
MW20S	12/04/91	а				
MW21D	12/04/91	a	~			
MW21S	12/03/91	a				
MW21D	12/03/91	а		-		
MW235	12/03/91	а	-		С	
MW23D	12/04/91	aD			••	
MW24	12/05/91	a				
MW25	12/05/91	а		•-		
MW26	12/05/91	aD	_	_		
MW27S	12/03/91	а		b		
MW271	12/03/91	a	а			
MW28S	12/03/91	a			<u></u>	
MW281	12/03/91	aD	-			
MW29S	12/03/91	а				
MW291	12/03/91	а				
MW30S	12/05/91	aD	а	ь	С	
MW301	12/05/91	a	-		С	
MW30D	12/06/91	а			-	
MW30BR	12/06/91	а		-		
MW31S	12/03/91	а		-		
MW311	12/03/91	а			-	
MW32S	12/06/91	aD			-	
MW321	12/06/91	а				
MW33S	12/06/91	а				
MW331	12/06/91	a	-			

		Table 2-	6				
	PHASE II GROUNDWATER SAMPLES						
Monitoring Well	Date Sampled	VOA	ABN	Total Metals	SAS*		
MW341	12/05/91	а			_		
MW35S	12/03/91	а			-		
MW36I	12/06/91	а			-		
MW37S	12/05/91	а		<u>-</u>			
MW37D	12/05/91	a		_	С		
MW385	12/05/91	a		-			
MW38D	12/05/91	а		-	_		
MW39	12/04/91		a	b			
MW40	12/04/91	2					
MW41	12/04/91		aD	ьо			
MW4 21	12/04/91	•	<u>a</u>	b	<u> </u>		
MW43S	12/05/91	3					
MW438R	12/05/91	a		-	_		
MW44D	12/05/91	a			_		

Key:

Commen

- Special Analytical Services included the following analyses in full or in part: Biological Oxygen Demand, Chemical Oxygen Demand, Nitrate and Nitrite, Oil and Grease, Total Alkalinity, Total Dissolved Solids, Total Organic Carbon, and Total Suspended Solids.
- a Pace Laboratory
- b Keytx Laboratory
- c Centec Laboratory
- Sample was not collected for analysis.
- D Duplicate sample
- NA Not accessible

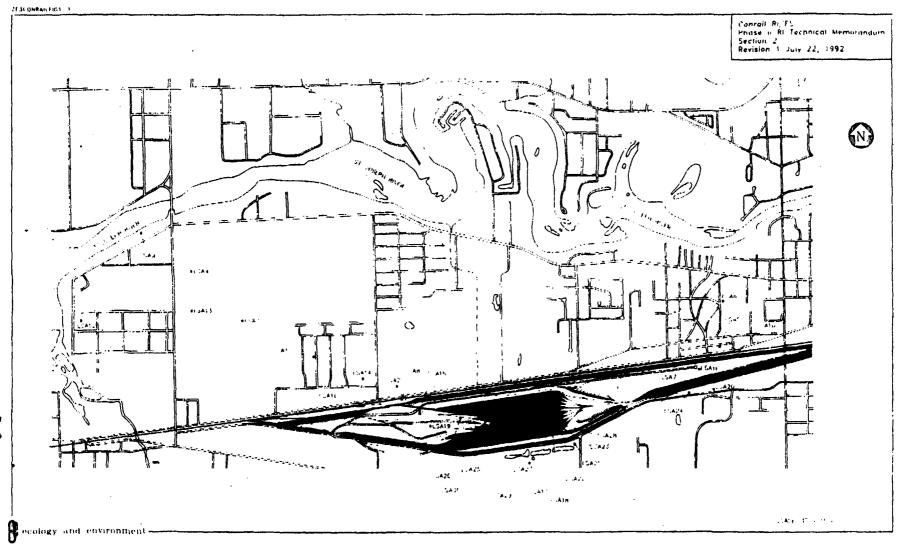


FIGURE 2-1

LEAD-SCREEN AUGER BORING LOCATIONS MAP

3. PHYSICAL RESULTS AND DISCUSSION

3.1 SITE GEOLOGY

This section briefly summarizes geotechnical information and data collected during the Phase II RI. The geologic information collected during the drilling of the monitoring well borings and soil borings along with data collected from slug tests is used to describe the geologic and hydrologic conditions present in the study area.

The results of the subsurface soil investigation during the Phase II RI show that the study area consists of unstratified sand and gravel glacial outwash deposits (see Appendices B and D for drilling logs). At numerous locations in the study area, clay and silt units were present at thicknesses typically ranging from 1 to 5 feet and at depths to 40 feet BGS. Three locations, monitoring well borings MW31, MW36, and soil boring B27, represent exceptions to this generalization. Monitoring well locations MW31 and MW36 were characterized by 7 1/2 and 13 feet of dark gray clay, respectively. Sixteen and one-half feet of brown silt was encountered during drilling of soil boring B27. In all three of these cases, adjacent soil borings or monitoring well borings show no silt or clay that can be correlated with respect to depth, thickness, color, and grain size. Correlation of the lateral continuity of thinner clay and silt units from other locations showed that the silt and clay units are present as discrete lenses and that no clay or silt unit is continuous throughout the study area. Comparison of the Phase II drilling logs to the results of the Phase I study confirms the apparent absence of clay in the County Road 1 area, throughout an area trending northwest-southeast across the study area. Figure 3-1 is a cross section from A-A' along a line bearing approximately northwest to southeast, from monitoring well location MW08 to MW31, which shows the variability of the subsurface unconsolidated

3-1

glacial material. The geologic cross section shows brown sand as the most abundant aquifer material. Although the grain size ranges from very fine sand to very coarse sand, there is no evidence of a trend or systematic grading in the grain size of the sand. Figure 3-1 and Appendices B and D clearly show that there is no continuous confining layer present in the study area. Dark gray clayey silt was encountered at a depth of approximately 136 feet BGS during drilling of MW08BR. It is not known whether this unit extends to bedrock. The other three bedrock wells were drilled until bedrock was encountered. In these cases, neither clay nor boulders were found on the bedrock surface.

The bedrock consists of the Coldwater Shale of Mississippian age and the Sunbury and the Ellsworth Shales of Devonian and Mississippian age (Imbrigiotta and Martin 1981). Shale was encountered in three wells: MW02BR, MW30BR, and MW43BR. Because the bedrock was reached at only three locations, the surface topography of the shale cannot be described in detail. These three bedrock wells are located roughly in a line, and, as a result, only the apparent dip of the bedrock surface can be determined. The elevations at which bedrock was encountered are 569.3 feet above MSL at MW43BR, 571 feet above MSL at MW02BR, and 599.5 feet above MSL at MW30BR; this is a range of 148.5 to 169 feet BGS. The greatest observed dip of the bedrock surface, between locations MW30BR and MW02BR, is less than 0.6 percent to the northwest. Without the benefit of additional data, this seems to indicate that the bedrock is essentially horizontal under the study area. The preglecial bedrock valley postulated by Imbrigiotta and Martin to extend into the study area is not present, as evidenced by the relatively high elevation of bedrock at MW30BR.

3.2 SITE HYDROGEOLOGY

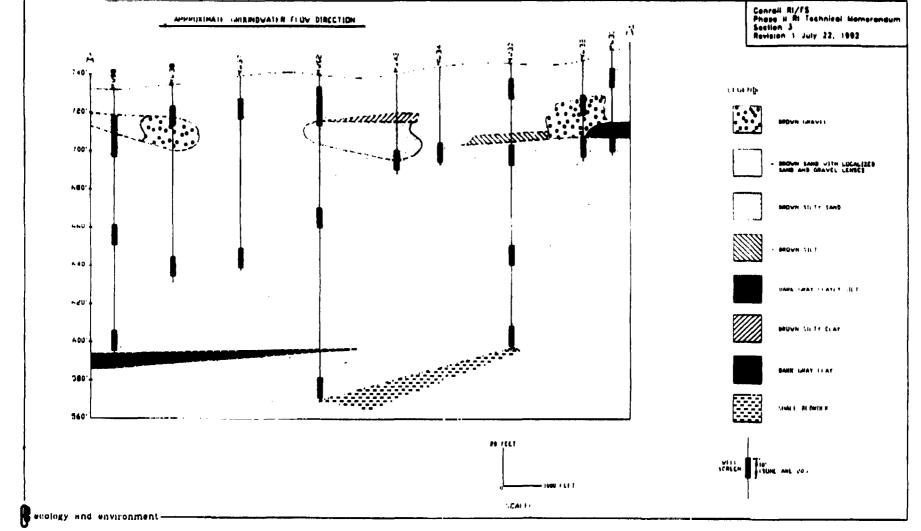
From E & E observations made during drilling of the soil borings and installation of monitoring wells, the depth to the water table in the study area ranges from 6 to 15 feet BGS. Water level measurement data that were collected on the Phase I and Phase II wells are presented in Table 2-5. Water levels in the wells systematically average approximately 1.5 feet higher than water levels collected during the Phase I RI. The St. Joseph River elevation during the Phase II measurements was approximately 0.7 feet lower than that measured during Phase I. Although all water level measurements are roughly comparable with respect to season, the 1.5-foot difference between Phase I and Phase II measurements is interpreted as reflecting a normal fluctuation in the hydrologic cycle.

3-2

Shallow, intermediate, and deep potentiometric surface maps were constructed to interpret the current groundwater flow patterns (Figures 3-2, 3-3, and 3-4, respectively). The maps were constructed using the data from Table 2-5 to enable comparison of three zones in the unconfined aguifer. The aguifer is divided into monitoring zones as a means to interpret the physical and chemical hydrogeology. Although groundwater elevation data collected on December 2, 1991 are not presented, groundwater flow patterns are very similar to flow patterns constructed from April 27 and 28, 1992, data. The general flow direction in all three zones is northwest. For the shallow zone, monitoring well MW43S indicates the presence of a groundwater mound. This is probably the result of the existence of clayey silt extending from approximately 14 to 18 feet BGS. The well screen of MW43S is located 6 to 16 feet BGS. Because of the absence of shallow monitoring wells in the vicinity of this groundwater mound, the flow regime near MW43S is not well understood. In the LaRue Street area, the general flow direction is north due to the groundwater's greater proximity and, therefore, discharge to the St. Joseph River. The shape of the potentiometric contour lines and thus the direction of groundwater flow is essentially the same as that determined during Phase I. The average Phase II horizontal groundwater gradient is 0.0018 ft/ft for the shallow zone, 0.0018 ft/ft for the intermediate zone, and 0.0019 ft/ft for the deep zone, which are also in agreement with the reported Phase I results.

Table 3-1 lists the vertical hydraulic gradients. Vertical hydraulic gradients were calculated using the water level measurements from the well nests. The gradients were calculated for the two measurement dates and both hydraulic gradient data sets are shown for comparison in Table 3-1. These results show a general downward gradient (as evidenced by the "+" signs) in the study area. The vertical gradient values range from -.05032 ft/ft for the MW10S/D well nest to +.06486 ft/ft for the MW33S/I well nest. The shallow/deep well nests MW10S/D, MW19S/D, and MW20S/D are relatively close to the river and show a small upward gradient. This is generally the case for shallow/deep wells near Baugo Bay and the St. Joseph River, except for MW08S/D and MW11S/D. The vertical hydraulic gradients and the respective locations of the wells in the study area are consistent with groundwater recharge in the railyard and subsequent groundwater discharge to the St. Joseph River.

3-3


3.3 SLUG TESTS

The results of the slug tests are listed in Table 3-2. The data were interpreted using a computer software package, SLUGIX® (Interpex Limited 1990). Options selected in this package included the Hvorslev method for unconfined aquifers and the first-order assumption that the lateral and vertical permeabilities have a ratio of 1 in the vicinity of the well screen. The results range from 9.6 x 10⁻⁵ ft/sec to 3.5 x 10⁻³ ft/sec and have a geometric mean of 8.0 x 10⁻⁴ ft/sec. The range of values is typical for unconsolidated silty sand, clean sand, and gravel (Freeze and Cherry 1979). Also, the greater than one order of magnitude difference between the high and low values reflects the range of aquifer materials observed during the geologic logging of soil and monitoring well borings. Of the 12 wells tested, the four lowest hydraulic conductivity values were obtained for the wells that were installed using the mud rotary drilling technique. The remaining eight wells tested were installed using the hollow-stem auger drilling technique. The Phase II slug test results are consistent with Phase I results, although the Phase I data show a greater range towards lower conductivity values.

3-4

Table 3-1								
VERTICAL HYDRAULIC GRADIENTS								
Well Nos. December 2, 1991 April 27-28, 1992								
Shallow/Intermediate Nest								
MW27S-MW27I	+.01510	+.01225						
MW28S-MW28I	+.00783	+.00696						
MW29S-MW29I	+.00037	+.00037						
MW30S-MW30I	+.01931	+.01931						
MW31S-MW31I	+.00119	+.00119						
MW32S-MW32I	+.00045	+.00500						
MW33S-MW33I	+.06486	+.01459						
Shallow/Deep Nest								
MW02S-MW02D	+.00103	+.00103						
MW04S-MW04D	+.00261	+.00377						
MW08S-MW08D	+.00194	+.00233						
MW10S-MW10D	05032	05032						
MW11S-MW11D	+.00067	N/A						
MW13S-MW13D	00055	00018						
MW19S-MW19D	00044	00133						
MW20S-MW20D	00055	00855						
MW21S-MW21D	+.00158	+.00218						
MW23S-MW23D	+.01582	+.01527						
MW30S-MW30D	+.00796	+.00773						
MW37S-MW37D	00038	00038						
MW38S-MW38D	+.00013	+.00000						
Shallow/Bedrock Nest								
MW02S-MW02BR	+.00000	+.00007						
MW085-MW08BR	+.00113	+.00094						

300HAM FIE 3- 1

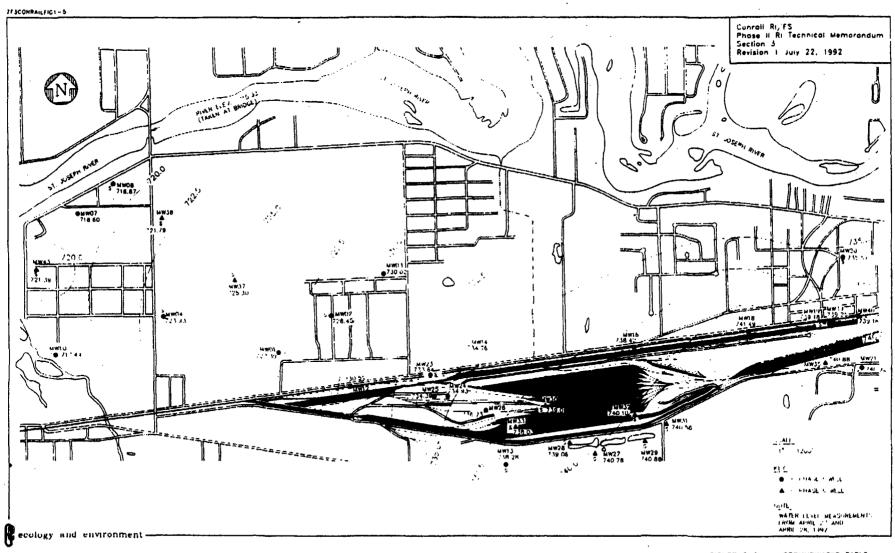


FIGURE 3-2 GROUNDWATER TABLE SURFACE MAP

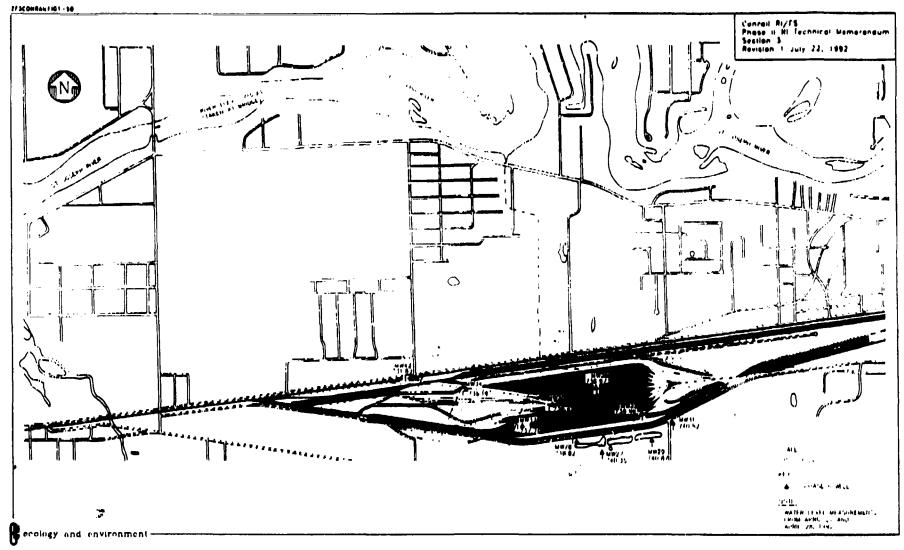


FIGURE 3-3 INTERMEDIATE CROUNDWATER POTENTIOMETRIC SURFACE MAP

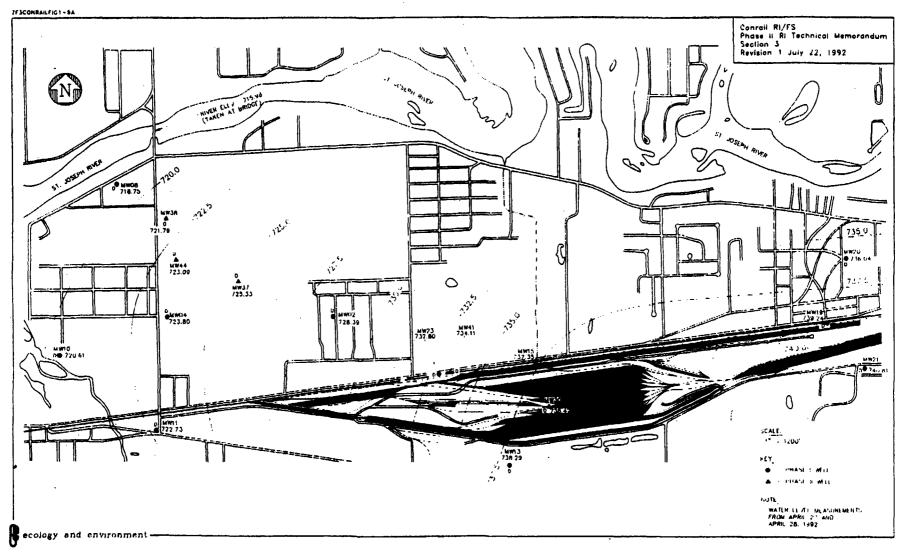


FIGURE 3-4 DEEP GROUNDWATER POTENTIOMETRIC SURFACE MAP

4. ANALYTICAL RESULTS AND DISCUSSION

4.1 LEAD-SCREEN AUGER SAMPLING

This section summarizes the analytical results of the groundwater samples collected from the 30 LSA borings completed as part of the Phase II RI at the Conrail railyard and surrounding study area. CCI₄ results are presented and discussed first, followed by TCE results. The analytical results of these groundwater samples are provided in Appendix A. The locations of the LSA borings are presented in Figure 2-1.

4.1.1 CCI, Results

Figure 4-1 presents the section line for cross section 8-8' trending northwest-southeast through the study area and Conrail railyard. Plate 2 presents the cross section 8-8' showing the concentration contours of CCI₄ within the aquifer in the direction of groundwater flow.

LSAs 21 and 27 (LSA 27 not included on cross section) were upgradient of the classification yard on the railyard based on groundwater flow direction. These borings were located to identify potential sources of CCl₄ upgradient of the railyard. CCl₄ was not detected in either LSA 21 or LSA 27 to completion depths of 140 and 83 feet, respectively. These data indicate that there are no sources of CCl₄ upgradient of the railyard contributing to the CCl₄ groundwater contamination identified downgradient of these locations.

On the Conrail railyard, five LSA borings (LSAs 17, 18, 22, 23, and 28) were drilled along the eastern end of track 69 to preliminarily identify the location of the CCI₄ tankcar spill. CCI₄ was detected in LSAs 22 and 23, with the highest concentrations found in LSA

4-1

23. In LSA 23, the CCl₄ concentration revealed very low level of contamination to a depth of 18 feet. A significant increase in CCl₄ contamination was detected in the 18- to 23-foot (5,100 μ g/L) and 23- to 28-foot depth interval (>9,100 μ g/L) samples, the highest detected concentrations throughout the study area. The contamination gradually decreased from 28 feet to the end of the boring at 38 feet BGS, where CCl₄ was detected at 560 μ g/L. The vertical extent of this CCl₄ contamination is not yet determined. These analytical results show that a source of CCl₄ groundwater contamination is located in the vicinity of LSA 23.

LSA 30, located 2,400 feet west of LSA 23, also revealed significant CCl_4 concentrations in the groundwater. LSA 30 was drilled to a depth of 26 feet, where an unknown subsurface obstruction caused auger refusal. Groundwater samples from this boring revealed no detectable levels of contamination until the 21- to 26-foot sample interval, where CCl_4 was detected at a concentration of 3,100 μ g/L. The analytical results of groundwater samples at this location also show a source of CCl_4 in the southwest portion of the classification yard on the railyard.

LSA borings 25 and 26, located on the Conrail railyard, advanced to 148 and 93 feet BGS, respectively, revealed very low or nondetectable concentrations of CCl₄ in the groundwater samples throughout the length of the borings. LSA 25 was drilled to the top of bedrock. The CCl₄ plumes originating near LSA 23 and LSA 30 may be passing north and south of LSAs 25 and 26, respectively. LSA 19 (not included on cross section), located on the Conrail railyard, revealed relatively low concentrations of CCl₄ ranging from 19 μ g/L (13- to 18-foot interval sample) to 41 μ g/L (33- to 38-foot interval sample), which may be attributable to the CCl₄ source areas identified based on LSA data.

Immediately off-site and downgradient of the Conrail railyard, groundwater samples from LSA 11 (located on the southwest corner of the intersection of U.S. 33 and County Road 1), showed CCl₄ concentrations in every interval sampled to the final boring depth of 93 feet. In this boring, the highest concentrations of CCl₄, ranging from 160 μ g/L to 330 μ g/L, were detected in groundwater samples collected between 23 and 53 feet BGS. Further east on U.S. 33, in LSA 8 (not included on cross section), CCl₄ was detected (74 μ g/L) at the 53- to 58-foot sample interval. The CCl₄ groundwater contamination plume was effectively tracked from LSA 11, to the northwest, into the County Road 1 residential area via LSA borings 14 and 1. LSA borings 14 and 1 each were drilled to 148 feet BGS.

A concentration of approximately 100 μ g/L was detected in both LSA borings at a depth of approximately 35 feet. The CCI₄ concentrations begin to spread vertically in LSA 1 with concentrations of approximately 100 μ g/L to a depth of 98 feet. This spreading is thought to be the result of the downward vertical gradient in the area.

Further downgradient in the direction of groundwater flow, LSA 3 was located between County Road 1 and Vistula Avenue residential areas in order to investigate the potential link between the CCl_4 contamination source(s) on the Conrail railyard and the CCl_4 contamination previously identified in the Vistula Avenue area. In this boring, CCl_4 was detected in every sample collected throughout the profile to a completion depth of 143 feet. A concentration of approximately $100 \ \mu g/L$ was detected at a depth of 35 feet. CCl_4 concentrations ranged from $110 \ \mu g/L$ to $500 \ \mu g/L$ between 35 and 113 feet BGS. CCl_4 concentrations detected deeper in this boring are thought to be the result of the downward vertical gradient in the area. The CCl_4 concentrations detected in groundwater samples between these depths are higher, on average, than levels detected in the County Road 1 area. The groundwater contamination plume is tracked from the County Road 1 area to this midpoint between residential areas.

LSA 4 was located in the path of groundwater contamination, upgradient of Vistula Avenue contamination area, in order to further establish the link between groundwater contamination in the Vistula Avenue and County Road 1 areas. The groundwater sample collected from the 18- to 23-foot interval in this boring revealed CCI₄ at a concentration of 420 μ g/L. The concentration of CCI₄ quickly decreases with depth and was not detectable at a depth of approximately 48 feet. CCI₄ was detected again in this boring in the groundwater sample from the 68- to 73-foot interval at a concentration of 190 μ g/L. From this interval, the concentrations steadily increase with depth, reaching a maximum concentration of 1,900 μ g/L at 93 feet BGS. CCI₄ concentrations of > 1,000 μ g/L were detected to a depth of 113 feet. From 113 feet to the end of the boring at 143 feet BGS, CCI₄ concentrations steadily decrease.

By comparing the groundwater results from LSA 4 to the results from LSA 3, two facts are revealed. First, in LSA 4, CCl₄ was detected near the water table at a much higher concentration (420 μ g/L) than found at a similar depth in LSA 3 (22 μ g/L). The known downward vertical gradient in the area coupled with the undetected CCl₄ zone between 48 and 68 feet BGS in LSA 4 suggests contribution from a potential shallow CCl₄

source. Second, the high levels of CCl_4 detected deeper in LSA 4 are a continuation of the plume originating from a source on the Conrail railyard. The very high levels of CCl_4 detected between 93 and 113 feet BGS represent the center of CCl_4 contaminant mass within the plume. The distribution pattern of CCl_4 throughout the plume, particularly the identified elliptically shaped center of mass with lower CCl_4 concentrations concentrically surrounding it, is indicative of the progression of a contaminant slug from a one-time point source (Fetter 1980). The plume in this area has a downward trend, again thought to be the result of the downward vertical gradient in the area. LSA 13 (not included on cross section) also revealed CCl_4 deeper in the boring (between 93 and 138 feet BGS) at concentrations ranging from 15 μ g/L to 730 μ g/L.

LSA 9 was located within the path of the groundwater CCl₄ plume and along the St. Joseph River to determine whether the plume reached the river and if so, at what relative concentrations. CCl₄ was detected in every groundwater sample collected from this boring between 3 and 148 feet BGS, with the exception of one interval (83 to 88 feet BGS). This pattern of contamination at this location is thought to be the result of mixing due to seasonal variations of groundwater recharge and discharge zones. The distribution of CCl₄ throughout the boring profile may also be the result of a contribution from the potential source suggested by the contaminant profile of LSA 4.

In the LaRue Street residential area (not included on cross section), seven LSA borings were completed (LSA 5, 6, 7, 10, 16, 20, and 24) in order to determine CCl_4 contamination in this area. The contamination detected in LSA 24 was the result of equipment cross-contamination, and is unusable. LSA boring 20 is located upgradient in the Conrail railyard, based on groundwater flow direction, to determine sources of CCl_4 upgradient of the railyard. CCl_4 was detected throughout the profile of this boring at concentrations below the instrument detection limit (5 μ g/L). These data show that no CCl_4 source exists directly upgradient of the railyard.

LSA 16 was located on the Conrail railyard adjacent to a reported disposal area. CCI₄ was not detected in the groundwater profile to the completion depth of the boring (68 feet BGS). This information suggests that CCI₄ is not contributing to groundwater contamination from the disposal area.

LSA 10, located downgradient of the Conrail railyard and directly upgradient of the Alco Tool Company along U.S. 33, had a CCI₄ concentration of 48 μ g/L in the

groundwater at the 13- to 18-foot sample interval. The remainder of the boring, to a depth of 88 feet, had very low or nondetectable concentrations of CCl₄. LSA 5, located west and north of LSA 10 had a maximum concentration (20 μ g/L) in this boring from a single sample interval (53 to 58 feet BGS). This shows a CCl₄ source in the vicinity of LSA 10. LSA 6, located downgradient of LSA 5, had very low CCl₄ concentrations (maximum of 7 μ g/L at 23 to 28 feet BGS), indicating little or no migration of contaminants to this specific location.

4.1.2 TCE Results

Figure 4-3 presents the section lines for cross sections C-C', D-D', and E-E'. Plate 3 presents the cross sections showing the concentration contours of TCE within the aquifer in the direction of groundwater flow.

In cross section C-C', LSA 21 was upgradient of the classification yard on the railyard based on groundwater flow direction. It was located to investigate potential sources upgradient of the railyard contributing TCE to the previously identified groundwater contamination. TCE was not detected in the groundwater samples of this boring to the final depth of 140 feet. These data show that no upgradient TCE sources are contributing to TCE contamination identified downgradient of this location.

LSA 27 (not included on the cross section) was located between the southern boundary of the Conrail property and the western drainage pond. The purpose of this boring was to investigate potential sources, upgradient of the Conrail railyard and upgradient of the ponds along the southern boundary of the property. TCE was detected above the detection limit (5 μ g/L) at a relatively low concentration (29 μ g/L) at a single depth interval (38 to 43 feet BGS). This boring was extended to a depth of 83 feet. These data show that no contributing TCE source existed upgradient to the railyard.

LSA 17 was located directly downgradient of LSA 21, in the track 69 area in the eastern end of the classification yard. This boring was extended to a depth of 108 feet and the highest TCE contamination (75 μ g/L) was detected in the groundwater sample from the 8- to 13-foot sample interval. The TCE concentrations in the groundwater samples from 13 feet to 103 feet BGS were detected close to the detection limit or not detected at all. These data show slight TCE contamination in the shallow zone at this boring location.

}

The highest concentrations of TCE detected in the study area were on the Conrail railyard and is represented by TCE concentrations detected in groundwater samples collected from LSA borings 29, 25, and 26. TCE concentrations in LSA 29 were elevated (1,700 µg/L) in the first sample interval (8 to 13 feet BGS) collected and remained elevated (1,500 µg/L) to the end of the boring at 83 feet BGS. The groundwater sample from the 38- to 43-foot interval detected TCE at 7,500 µg/L, the maximum concentration detected in any sample interval. LSA 25 was advanced to the top of bedrock and TCE was detected throughout the entire profile at elevated concentrations. The concentration of TCE detected in the groundwater sample collected on top of bedrock was 490 μ g/L. The maximum concentrations of TCE (>5.000 µg/L) were detected in groundwater samples collected between 43 and 58 feet BGS of this boring. TCE again was detected at elevated concentrations in the groundwater at LSA 26 through the entire length of the boring (93 feet BGS). The maximum concentrations of TCE (>6,000 μ g/L) in LSA 26 were detected in groundwater samples collected between 38 and 53 feet BGS. TCE concentrations remained high (> 1,800 µg/L) from 53 feet BGS to the end of the boring. The data from these 3 LSA borings show that a significant TCE plume originates on the Conrail railyard from a presently unidentified source location. An elliptically shaped center of TCE contaminant mass with concentrations > 5,000 μ g/L is identified to span at least between these 3 LSA borings on the Conrail railyard.

LSA 15 tracked the TCE contamination plume from the center of mass described above to the location of LSA 15, north of the car shop. The maximum TCE concentration in this boring (1,000 μ g/L) was detected in the groundwater sample interval 43 to 48 feet BGS. Because TCE concentrations detected in LSA 15 were > 1,000 μ g/L and lower than the TCE concentrations in LSA borings 25 and 26 indicates that LSA 15 is located sidegradient of the identified center of mass.

Immediately downgradient of the Conrail railyard, groundwater samples from LSA 8 (located on the south side of U.S. 33 and within the path of the plume) showed elevated TCE concentrations, ranging from 1,600 μ g/L to 3,100 μ g/L between 63 and 83 feet BGS. TCE contamination was detected throughout the profile between 23 and 136 feet BGS. Low TCE concentrations (<15 μ g/L) are detected from the water table to an approximate depth of 50 feet. LSA 2, located north of LSA 8, detected a similar contamination profile pattern as that of LSA 8. The TCE concentration profile in the shallow zone is thought to

be the result of the downward vertical gradients in the area. The high concentration zones detected in these two borings identify part of another elliptical center of TCE contaminant mass, also trending downward under the influence of a downward vertical hydraulic gradient. This center of mass is identified by concentrations $> 1,000 \ \mu g/L$.

Further downgradient of LSA 2 and 8, TCE was detected at every groundwater sample interval of LSA 14, to the completion depth of the boring (148 feet BGS). In this boring, concentrations of 78 μ g/L and 79 μ g/L detected at shallow depths (13- to 18-foot and 23- to 28-foot intervals, respectively) were significantly higher than concentrations detected in LSA 2 and 8 at similar depths. These data suggest an additional potential shallow source contributing TCE contamination. Between 33 and 108 feet BGS of this boring, the concentrations are > 500 µg/L, with two intervals (33 to 58 feet BGS and 93 to 98 feet BGS) detecting TCE at concentrations > 1,000 μ g/L. The high concentrations detected between 33 and 58 feet BGS identify another elliptical center of TCE contaminant mass with concentrations $> 1,000 \mu g/L$. This center of mass may be the result of contribution from the potential source indicated by shallow TCE contamination detected in this boring. The high contamination detected between 93 and 98 feet identifies the tail end of the center of mass identified in LSA 2 and 8. Both center of masses are trending downward, a result of the downward vertical gradient in the area. This contamination tracks the TCE groundwater plume from the Conrail railyard into the County Road 1 residential area.

LSA 1 was located in the County Road 1 residential area, adjacent to MW02 monitoring well location, within the path of the groundwater plume, based on groundwater flow direction and Phase I groundwater analytical results from MW02S and MW02D. TCE was detected throughout the profile of this boring to a depth of 148 feet. High concentrations (>1,000 μ g/L) were detected between 73 and 118 feet BGS. This center of mass was surrounded by concentrations >500 μ g/L at 68 feet BGS and 138 feet BGS. The zone of high concentration (>1,000 μ g/L) is a continuation of the shallow center of mass indicated in LSA 14. The surrounding contamination (>500 μ g/L) is a continuation of the Contaminant plume originating on the Contail railyard. The downward trend of the TCE plume is a result of the downward vertical gradient.

Further downgradient in the direction of groundwater flow, LSA 3 was located between the County Road 1 and Vistula Avenue residential areas in order to investigate

4-7

the potential link between the TCE contamination source(s) on the Conrail railyard and the TCE contamination previously identified in the Vistula Avenue area. In this boring, TCE was detected in every sample collected throughout the profile to a completion depth of 143 feet. Elevated concentrations of TCE were detected (480 μ g/L) at a shallower depth (38 feet) than were identified (20 μ g/L) at a similar depth in LSA 1. This data coupled with the known downward vertical gradient in the area suggest contribution from a potential shallow TCE source. TCE concentrations >500 μ g/L were detected between depths 58 to 83 feet, and again between depths 128 to 133 feet. The concentration between these zones range from 220 μ g/L to 400 μ g/L. The shallow zone (58 to 83 feet BGS) of elevated TCE concentrations (>500 μ g/L) may indicate a continuation of the TCE plume originating on the Conrail railyard or may indicate the center of mass of the potential shallow source suggested based on shallower TCE concentrations detected in this boring. The deeper zone (128 to 133 feet BGS) of elevated TCE concentration (>500 μ g/L) shows a continuation of the TCE plume originating on the Conrail railyard.

LSA 4 was located in the path of groundwater contamination upgradient of Vistula Avenue contamination area, in order to further establish the link between contamination in Vistula Avenue and County Road 1 areas. The groundwater sample collected from the 18-to 23-foot interval in this boring detected TCE at a concentration of 130 μ g/L. The concentration of TCE quickly decreases with depth and was non-detectable at a depth of 48 feet. TCE concentrations remained undetectable until 118 feet BGS where TCE was detected at 35 μ g/L. The highest concentration of TCE (50 μ g/L) in the deep portion of this boring was in the groundwater sample from the 128 to 133 foot interval. This contamination tracks the plume from County Road 1 area to the Vistula Avenue area. The TCE detected near the water table in this boring is at a higher concentration (130 μ g/L) than found at a similar depth in LSA 3 (20 μ g/L). The known downward vertical gradient in the area coupled with the undetected TCE zone between 48 and 113 feet BGS in LSA 4 indicate contribution from a potential shallow TCE source.

LSA 9 was located within the path of the groundwater plume and along the St.

Joseph River to determine if the plume reached the river. TCE was detected in every groundwater sample collected between 3 and 148 feet BGS. This pattern of contamination at this location is thought to be the result of mixing due to seasonal variations of the groundwater recharge and discharge zones. The distribution of TCE throughout the boring

8044

profile may also be the result of contribution from the potential shallow source indicated by the contaminant profile of LSA 4.

In cross section D-D', the contaminant profile and implications of LSA 3 have been presented and discussed. LSA 13 was located upgradient of the Charles Avenue area in order to investigate the link between groundwater contamination in Charles Avenue and County Road 1 areas. The groundwater flow in this area takes on a stronger westerly component, toward Baugo Bay. In LSA 13, completed to a depth of 138 feet, TCE was first detected at concentrations > 50 µg/L at a depth of 93 feet. Above this depth, very low or non-detectable levels of TCE were detected. The highest concentration of TCE (250 µg/L) was detected in groundwater from the interval 113 to 118 feet BGS. The contamination gradually decreases from this depth to the end of the boring, where TCE is detected at 33 µg/L. The decrease in depth of detectable levels of TCE in this boring is the result of the downward vertical gradient in the area. The higher TCE concentrations toward the end of the boring shows the continuation of the TCE plume originating on the Conrail railyard. LSA 12, located close to Baugo Bay, revealed low TCE concentrations (29 µg/L) detected near the water table. TCE concentrations quickly decrease to nondetectable levels by 43 feet BGS, and was detected again at 123 feet BGS at a concentration of 320 µg/L. The concentrations remain at this approximate concentration to the completion depth of this boring (148 feet BGS). Because Charles Avenue area is within the path of the groundwater contamination plume originating on the Conrail railyard, the deep TCE contamination detected in LSA 12 may show continuation of this same plume.

In cross section E-E', LSA 20 was located upgradient in the Conrail railyard in order to investigate potential, upgradient sources contributing to TCE groundwater contamination detected in the La Rue Street area. TCE was detected (16 μ g/L) above the instrument detection limit at a single interval (38 to 43 feet BGS) through the completion depth of the boring (73 feet BGS). These data show a contributing source in the vicinity of LSA 20.

Downgradient of this location, LSA borings 16 and 17 were located on the Conrail railyard. The highest level of contamination detected in LSA 16 (53 μ g/L) was in the groundwater sample from the 18- to 23-foot interval. Contaminant levels gradually decrease until 33 feet BGS where TCE is detected below the instrument detection limit. 16 μ g/L of TCE is detected at the completion depth of this boring (68 feet). LSA 7 detected TCE contamination ranging from 6 μ g/L to 160 μ g/L between 23 and 43 feet

4-9

recyl edipases

14. Sec. 14.

ZF3073.D7838

magnetism but reshess

BGS. TCE was not detected from 43 feet to the end of the boring at 68 feet BGS. The data from the shallow zones of these two borings show the origination of a TCE plume on the Conrail railyard in the vicinity of LSA 7. A center of TCE contaminant mass is identified in LSA 7 between 28 and 33 feet BGS. The low level of contamination detected in LSA 16 shows a continuation of the low levels of TCE contamination identified in LSA 20. The downward trend of this deeper contamination is the result of the downward vertical gradient in the area.

Further downgradient, LSA 6 is located in the LaRue Street residential area. Low or nondetectable levels of TCE contamination are detected in this boring to its completion depth (98 feet). The maximum concentration (15 μ g/L) was detected near the water table. These data show the continuation of the TCE groundwater plume from the Conrail railyard into the LaRue Street residential area.

4.2 SOIL BORINGS - SUBSURFACE SOILS

The analytical results for 42 soil samples and duplicate subsurface soil samples are presented in Appendix C. The types of analyses performed for each sample are listed in Table 2-1 and a summary of the analytical results is presented in Table 4-1. Volatile and semivolatile analyses were performed for all 42 soil samples to preliminarily define the dimensions and nature of the sources. Four samples were analyzed for pesticides/PCBs, TAL metals, and TOC. The locations for these four samples were chosen to provide samples representative of the study area and to provide data potentially necessary for the FS. These data are reported but not discussed in this report. Soil boring locations were selected based upon LSA results. Soil sample intervals selected for volatile and semi-volatile CLP analyses were chosen based on OVA readings in the field and/or based on the depth and aquifer material relative to the LSA results.

CCl₄ - Carbon tetrachloride was detected in seven soil samples with the highest concentration measured at 27,000 μ g/kg in B-24, at the 20- to 22-foot sample interval. CCl₄ was also detected in sample B-25, in the 23.5- to 25.5-foot sample interval at 23,000 μ g/kg.

TCE - Trichloroethene was detected in 16 samples. The highest concentration was 15,000 μ g/kg in B-28, at the 0- to 2-foot sample interval. This compound was also detected in sample B-32, at the 0- to 2-foot sample interval at 170 μ g/kg.

Other Volatiles - Ten volatile organic compounds (VOCs), other than CCl₄ and TCE, were detected in the soil samples. Chloroform was detected in three samples, the highest concentration (3,300 μ g/kg) from B-24, at 22.5- to 24.5-foot sample interval. 1,2-dichloroethene (total) was detected in four samples. Sample B-32, 0- to 2-foot interval, revealed the highest concentration, at 5,600 μ g/kg. Toluene, the most frequently detected VOC, was detected in 21 samples. Sample B-35, at 0 to 2 feet, had the highest concentration of toluene (38 μ g/kg). Acetone was detected in 15 samples with sample B-25, 23.5 to 25.5 feet, having the highest concentration (4,700 μ g/kg). Acetone is considered a common laboratory artifact.

Semivolatiles - Twenty semivolatile compounds were detected with pyrene as the most frequently detected in eight samples. Sample B-20, 5 to 6.5 feet, had the highest concentration of pyrene, detected at 6,800 μ g/kg.

Discussion - Five areas on the Conrail railyard were targeted in the subsurface soil investigation to locate and define sources of the CCI₄ and TCE groundwater contamination: the car shop, the clean-out track, the pond area, track 69 in the east end of the classification yard, and between tracks 65 and 66 in the west end of the classification yard. Soil boring locations in these five areas are presented on Plate 1. Two of the areas, respectively, revealed high concentrations of CCI₄ and TCE in the soil; respectively, each area is identified as a source for CCI₄ or TCE groundwater contamination.

A CCI₄ source located in the track 69 area, in the eastern end of the classification yard, is identified based on analytical results of soil samples collected from soil borings B-24 and B-25. Plate 1 presents CCI₄, TCE, and other selected organic analytical results for all soil samples analyzed. The deepest CCI₄ contamination detected in this area occurs at a depth of 25.5 feet BGS in soil boring B-25, at a concentration of 23,000 μ g/L. Similar levels and depths of contamination were detected in B-24. The vertical extent of this source is not yet determined. Soil samples from similar depths analyzed from B-26,

4-11

located 40 feet east of B-25, revealed CCI_4 at 2 μ g/L or not detected. These data suggest that large changes in CCI_4 concentrations in the soil occur over relatively small, lateral distances. The areal extent of this source is not yet determined.

A TCE source area is located in the west end of the classification yard between tracks 65 and 66, and is identified based on analytical results of soil samples collected from borings B-28 and B-32. A contamination pattern exists similar to that observed in the track 69 area, that is, a sharp difference in contaminant concentration between samples separated by a small lateral distance. For instance, the 0- to 2-foot depth interval soil sample from B-29 revealed TCE at 13 μ g/L, while the soil sample from the same interval from B-28, located 40 feet east of B-29, had a TCE concentration of 15,000 μ g/L. The east-west spatial boundaries of this source appear to be well determined, and based on analytical results and sample intervals, this appears to be a surface source of TCE.

4.3 MONITORING WELLS - GROUNDWATER

The analytical results for the 63 groundwater samples from monitoring wells, the duplicates, the blanks, and the trip blanks are listed in Appendix E. The types of analyses obtained for each well are listed in Table 2-6 and a summary of analytical results is presented in Table 4-2. VOC analyses were obtained for all groundwater samples in order to further define the nature and extent of contamination plumes. Plate 4 shows volatile organic analytical results adjacent to the appropriate well locations. Analyses for semi-volatiles, TAL metals, and Special Analytical Services (SAS) parameters were conducted to evaluate the effect of groundwater chemical and physical parameters on potential treatment alternatives. The six sample locations were chosen for these analyses on the basis of their representative distribution throughout the study area. These data are reported but not discussed in this report.

 CCI_4 - Carbon tetrachloride was detected in 16 of the groundwater samples. The highest measured concentration was 1,900 μ g/L in MW38D.

TCE - Trichloroethene was detected in 25 of the groundwater samples. The highest measured concentration was 11,000 μ g/L in MW41.

Other Volatiles - Nine VOCs other than CCl_4 and TCE were detected in the ground-water samples. Chloroform, likely a degradation product of CCl_4 , was detected in 13 samples, with the highest concentration (120 μ g/L) in MW38D. 1,2-dichloroethene (total), a likely degradation product of TCE, was detected in six samples with the highest concentration of 230 μ g/L in MW41.

Discussion - Groundwater data from the Phase II sampling effort confirm that sources contributing CCIA and TCE to the groundwater contamination plume are present on the Conrail railyard. Based upon the groundwater flow in the aquifer, groundwater samples upgradient of the railyard show no detectable levels of CCI and TCE. Groundwater samples from monitoring wells within the railyard have both CCI and TCE; 260 µg/L is the maximum CCI₄ concentration at location MW24, and 6,900 μ g/L is the maximum TCE concentration at location MW30I. The CCI_A and TCE groundwater contamination is effectively tracked directly off the Conrail railyard in a groundwater plume which follows the established groundwater flow direction to the St. Joseph River. The maximum concentrations of CCI and TCE detected directly downgradient of the Conrait railyard, prior to any other potential source(s), are 200 μ g/L at location MW42I and 11,000 μ g/L at location MW41D, respectively. The data also corroborates conclusions presented in the "Preliminary Evaluation of Phase I Results and Interim Remedial Alternatives" report of a "hot zone" of TCE groundwater contamination in the northern section of the plume as it flows through the County Road 1 residential area and a "hot zone" of CCI, groundwater contamination in the southern section of the plume through the same area.

The TCE detected across the study area may have been introduced to the groundwater from the TCE surface source described in Section 4.2. Description of TCE through infiltration of rainwater could result in contaminants reaching the water table.

TCE was detected at monitoring well location MW43BR in the Charles Avenue residential area. File information from previous well data (Peerless-Midwest (no date)) has shown that groundwater in this area has detected levels of CCI₄ and TCE. Because Charles Avenue area is within the path of the groundwater contamination plume originating on the Conrail railyard, the TCE detected at MW43BR may show the continuation of this same plume.

The groundwater contaminated with CCl₄ identified through LSA borings in the track 69 area is not effectively tracked with groundwater sample results from this location to the established plume. The CCl₄ source in the track 69 area is confirmed through soil samples from soil borings in this area and discussed in Section 4.2. CCl₄ concentrations detected in groundwater samples from wells on the Conrail railyard may be attributable to an additional, as yet unidentified source on the railyard.

The analytical data and distribution of CCI₄ and TCE in the study area strongly suggest contributions from more than a single source for both compounds. Many other factors may be influencing the distribution of contamination in the study area. For instance, a subsurface drainage network on the railyard containing contaminated stormwater runoff would likely impact the distribution of contamination in the study area.

Table 4-3 is a comparison of CCI₄ and TCE analytical results from groundwater samples collected from LSA borings and monitoring wells. It is important to note that the two sets of data represent different sample collection procedures, analytical methods, and data quality objectives. Although the depth intervals of the LSA samples and the screened intervals of the monitoring wells do not precisely coincide, a comparison of the data sets shows that the LSA technique was effective in determining both upgradient and downgradient monitoring well locations as well as identifying the screened intervals, the use for which it was intended. At LSA 30 and comparable monitoring well location MW33S, CCI₄ and TCE were detected in the LSA but not in the monitoring well; the majority of comparisons, however, shows a strong similarity of analytical results between the data sets. This added validation of the LSA boring results further substantiates the results presented and discussed in Section 4.1.

Table 4-1						
SUMMARY OF CONCENTRATIONS OF ORGANICS AND METALS						
DETECTED IN SUBSURFACE SOIL SAMPLES						

		,		
	Minimum	Maximum	Location of Maximum	Frequency of
Contaminent	Concentration	Concentration	Concentration	Detection ^a
Valetiles (ug/kgl				
Vinyl chlonde	8	8	CRB-32 (0-2)	1/42
Methylene chloride	2	11	CR8-20 (7.5-9.5)	8/42
Acetone	18	4,700	CRB-25 (23.5-25.5)	15/42
1,2-dichloroethene (total)	7	5.600	CRB-32 (0-2)	4/42
Chloroform	1,200	3.300	CR8-24 (22.5-24.5)	3/42
2-butanone (MEK)	6	22	CR8-32 (0-2)	7/42
Carbon tetrachloride	2	27,000	CRB-24 (20-22)	7/42
4-methyl-2-pentanone	7	7	CRB-23 (10-12)	1/42
Trichloroethene	1	15,000	CRB-28 (0-2)	16/42
Tetrachioroethene	1	7	CRB-35 (0-2)	11/42
Toluene	1	38	CRB-35 (0-2)	21/42
Xylenes (total)	2	3	CR8-28 (0-2)	5/42
Semivoletiles (rg/kg)				
Hexachloroethane	55	55	CRB-24 (20-22)	1/42
Naphthalene	200	1,800	CRB-20 (5-6.5)	2/42
2-methylnaphthalene	3,900	15,000	CR8-20 (5-6.5)	2/42
Acenaphthylene	61	61	CRB-32 (0-2)	1/42
Acenapthene	61	3,000	CRB-20 (5-6.5)	3/42
Dibenzofuran	420	1,600	CR8-20 (5-6.5)	2/42
Fluorene	63	3,000	CR8-20 (5-6.5)	3/42
Phenanthrene	83	3,800	CR8-20 (5-6.5)	5/42
Anthracene	340	1,400	CR8-20 (5-6.5)	2/42
Di-n-butylphthalate	22	23	CR8-22 (10-12)	2/42
Fluoranthene	38	6,600	CR8-20 (5-6.5)	7/42

4-15

Table 4-1										
SUMMARY OF CONCENTRATIONS OF ORGANICS AND METALS DETECTED IN SUBSURFACE SOIL SAMPLES										
Location of Frequency Minimum Maximum Maximum of Contaminant Concentration Concentration Detection										
Semivolatiles (µg/kg) (Cont.)										
Pyrene	30	6,800	CRB-20 (5-6.5)	8/42						
Benzo(a)anthracene	130	1,200	CRB-20 (5-6.5)	4/42						
Chrysene	47	1,500	CR8-20 (5-6.5)	5/42						
Bis(2-ethylhexyl)phthalate	49	2,400	CRB-20 (5-6.5)	7/42						
Benzo(b)fluoranthene	41	480	CRB-32 (0-2)	5/42						
Benzo(k)fluoranthene	140	410	CRB-32 (0-2)	2/42						
Benzolalpyrene	61	330	CR8-32 (0-2)	3/42						
Indeno[1,2,3-cd]pyrene	390	390	CRB-32 (0-2)	1/42						
Benzo(g,h,i)perylene	260	260	CRB-32 (0-2)	1/42						
Pesticides/PCBs (µg/kg)	,									
Dieldrin	0.68	0.68	CR8-22 (7.5-9.5)	1/4						
Endrin	7.8	7.8	CRB-22 (7.5-9.5)	1/4						
Endosulfan sulfate	1.5	1.5	CRB-22 (7.5-9.5)	1/4						
Methoxychlor (Mariate)	4.9	4.9	CR8-22 (7.5-9.5)	1/4						
Endrin aldehyde	3.1	3.1	CRB-22 (7.5-9.5)	1/4						
Aroclor 1260	65	65	CRB-22 (7.5-9.5)	1/4						
Total Metals (mg/kg)										
Aluminum	1,970	5,560	CR8-22 (7.5-10.5)	4/4						
Arsenic	1.8	4.1	CRB-26 (22.5-24.5)	4/4						
Barium	5.8	35.8	CRB-22 (7.5-10.5)	4/4						
Cadmium	1.2	3.2	CRB-22 (7.5-10.5)	4/4						
Calcium	1,470	98,200	CRB-26 (22.5-24.5)	4/4						
Chromium	6.3	18.7	CRB-22 (7.5-10.5)	4/4						
Cobait	2	5.1	CRB-22 (7.5-10.5)	4/4						

Table 4-1 SUMMARY OF CONCENTRATIONS OF ORGANICS AND METALS DETECTED IN SUBSURFACE SOIL SAMPLES								
Location of Frequent Maximum Maximum of Concentration Concentration Detection								
Total Motals (mg/kg) (Co	nt.)			: - , 				
Copper	4.6	11.9	CR8-22 (7.5-10.5)	4/4				
Iron	4,910	12,300	CRB-22 (7.5-10.5)	4/4				
Lead	2.3	6.9	CRB-22 (7.5-10.5)	4/4				
Magnesium	1,950	20,800	CR8-26 (22.5-24.5)	4/4				
Manganese	159	702	CRB-22 (7.5-10.5)	4/4				
Nickel	4.4	15.8	CRB-22 (7.5-10.5)	4/4				
Potassium	267	1.020	CRB-22 (7.5-10.5)	4/4				
Sodium	120	179	CRB-22 (7.5-10.5)	4/4				
Thatfium	0.27	0.32	CRB-28 (15-17)	2/4				
Vanadium	3.5	14.2	CR8-22 (7.5-10.5)	4/4				
Zinc	19.2	34.3	CR8-22 (7.5-10.5)	4/4				

Total number of samples consists of investigative samples only. Duplicate samples not included.

Note: This table reports only organics and metals of concern that were detected in the analysis. Non-detected organics and metals are not reported.

Table 4-2									
SUMMARY OF CONCENTRATIONS OF ORGANICS AND METALS DETECTED IN GROUNDWATER SAMPLES									
Minimum Maximum Location of Frequency Minimum Maximum Maximum of Concentration Concentration Concentration Detection ⁸									
Volatiles (µg/L)									
Acetone	2	26	MW44D-1	14/63					
Carbon disulfide	2	3	MW03-2	2/63					
1,1-dichloroethene	56	56	MW41-1	1/63					
1,1-dichloroethane	3	3	MW30BR-1	1/63					
1,2-dichloroethene (total)	2	230	MW41-1	6/63					
Chloroform	2	120	MW38D-1	13/63					
1,1,1-trichloroethane	4	14	MW21D-2	4/83					
Carbon tetrachloride	2	1,900	MW38D-1	16/63					
Trichloroethene	2	11,000	MW41-1	25/63					
1,1,2-trichloroethane	2	2	MW41-1	1/63					
Tetrachloroethene	6	7	MW34-1	3/63					
Semivolatiles (µg/L)									
Di-n-butylphthalate	0.6	0.6	MW39-1	1/6					
Bis(2-ethylhexyl)phthalate	21	21	MW42-1	1/6					
Di-n-octylphthalate	2	2	MW30S-1	1/6					
Total Metals (µg/L)		· · · · · · · · · · · · · · · · · · ·							
Arsenic	4.1	4.6	MW41-1	3/6					
Barium	28.6	68.1	MW39-1	4/6					
Cadmium	15.1	15.1	MW41-1	1/6					
Calcium	60,200	124,000	MW39-1	6/6					
Cobalt	49.2	49.2	MW41-1	1/6					
Copper	10.5	101	MW41-1	3/6					
Iron	87.8	217	MW42-1	2/6					
Lead	2.2	5.7	MW41-1	3/6					

4-18

i 13

Table 4-2										
SUMMARY OF CONCENTRATIONS OF ORGANICS AND METALS DETECTED IN GROUNDWATER SAMPLES										
Attnimum Maximum Lecution of Frequence Maximum Maximum of Maximum of Concentration Concentration Concentration Detection										
Total Metals (eg/L) (Cont.)										
Magnesium	Magnesium 10,400 23,200 MW39-1 6/6									
Manganese	10.8	717	MW27S-1	5/6						
Nickel	44.7	69.9	MW41-1	2/6						
Potassium	1,410	14.000	MW39-1	6/6						
Sodium	4,180	206,000	MW2S-2	6/6						
Zinc	16.8	427	MW27S-1	5/6						
Special Analytical Services Imp	r)									
Biochemical Oxygen Demand	Biochemical Oxygen Demand 13 19 MW30I-1 3/3 MW37D-1									
Chemical Oxygen Demand	21	83	MW30I-1	3/3						
Mitrate/Mitrate	1.65	4.05	MW30I-1	3/3						
Oil and Grease 8 8 MW02S-2 3/3 MW23S-2 MW30I-1										
Total Alkalinity	248	1,155	MW02S-2	3/3						
Total Dissolved Solids	350	820	MW02S-2	3/3						
Total Organic Carbon	3.5	17.8	MW02S-2	3/3						
Total Suspended Solids	464	8.740	MW02S-2	3/3						

Total number of samples consists of investigative samples only. Duplicate samples not included.

Note: This table reports only organics and metals of concern that were detected in the analysis. Non-detected organics and metals are not reported.

co			Table ATER ANALYTICA ENE FROM LSA B	AL RESULTS I	-		IIDE
LSA		Monite	CCI ₄ TCE (wg/L) (wg/L)		Manitorine Wall		
LSA No.	Sample Interval (feet)	Wall No.	Screened Interval (feet)	LSA	CLP	LSA	CLP
LSA1	23-28	MW02S	6.5-26.5	27	130	11	95
LSAT	73-78	MW02D	70-80	210	51	1400E	270
LSA1	143-148	MW02BR	158.9-168.9	3	ND	230	32
LSA3	18-23	MW37S	12-22	22	15	20	20
LSA3	88-103	MW37D	90-100	130	110	340	540
LSA4	18-23	MW38S	11-21	420	720	130	87
LSA4	88-103	MW38D	90-100	1600E	1900	ND	17
LSA6	13-18	MW20S	11-31	4J	NO	15	8
LSA6	73-78	MW20D	71-81	31	ND	ND	ND
LSA7	23-28	MW39\$	20-30	1J	ND	67	ND
LSA8	68-73	MW41D	65-75	1,J	ND	3100	11000
LSA9	13-18	MW08S	14.5-34.5	64	800	80	160
LSA9	73-75	MWO8D	71-81	16	310	65	200
LSA9	123-128	MW08BR	126-136	ND	4	10	ND
LSA10	23-28	MW40S	20-30	5	65	15	2
LSA11	43-48	MW421	40.1-50.1	330	200	76	22
LSA12	13-18	MW43S	6-16	4J	ND	29	ND
LSA12	143-148	MW43BR	146.5-156.5	ND	ND	420	330
LSA13	113-128	MW44D	115-125	690E	970	205	28
LSA15	43-48	MW34I	40-50	2J	ND	1000E	1400
LSA21	8-13	MW31S	8.5-18.5	ND	ND	ND	ND

4-20

ND

ND

ND

42-52

MW311

48-53

LSA21

10 m (14 m)

ZF3073.D7838

ND

Table 4-3 COMPARISON OF GROUNDWATER ANALYTICAL RESULTS FOR CARBON TETRACHLORIDE AND TRICHLOROETHENE FROM LSA BORINGS AND MONITORING WELLS									
CCI ₄ TCE LSA Menitoring Well (vgA) (vgA)									
LSA No.	Sample Interval (feet)	Well No.	Screened Interval (feet)	LSA	CLP	LSA	CLP CLP		
LSA24	23-28	MW35S	20-30	17	ND	ND	ND		
LSA25	13-18	MW30S	8-18	8	ND	890E	130		
LSA25	43-48	MW301	42.7-52.7	4J	ND	5200E	6900		
LSA25	93-98	MW300	94.7-104.7	6	ND	1200E	38		
LSA25	143-148	MW308R	137-147	6	ND	490	ND		
LSA27	8-13	MW27S	8-18	ND	ND	2	ND		
LSA27	48-53	MW271	43.1-53.1	ND	ND	ND	NO		
LSA28	18-23	MW32S	18-28	NO	ND	9	2		
LSA28	38-43	MW321	40-50	ND	ND	3J	160		
LSA30	21-26	MW33S	16.5-26.5	3100E	ND	1200E	NO		

Definitions of field lab qualifiers (CLP qualifiers not shown):

E Estimated above the upper limit of the calibration range (500 µg/L).

J Measured below the detection limit (5 µg/L).

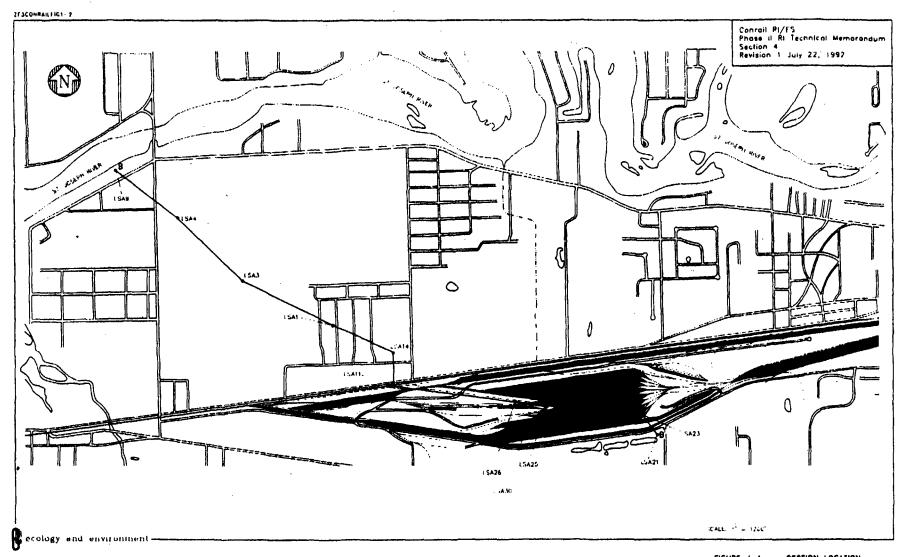


FIGURE 4-1 SECTION LOCATION - B-8' MAP

FIGURE 4-2 SECTION LOCATIONS -C-C; D-D; AND E-E' MAP

5. CONCLUSIONS AND DATA GAPS

The purpose of the Phase II RI was to determine the nature and extent of contamination at the Conrail railyard and vicinity and to address the following objectives presented in the WP.

- Preliminarily identify the potential source(s) contributing to the County Road 1 and LaRue Street contamination areas;
- Evaluate the relationship between the County Road 1 plume, the Vistula Avenue plume, and the Charles Avenue plume;
- Define the nature and approximate extent of the source(s) of the contamination as they are tentatively identified during the Phase II investigation; and
- Further define the nature and extent of the contaminant plumes.

5.1 CONCLUSIONS

This Phase II RI Technical Memorandum addresses the objectives listed above and documents the following conclusions:

1) Soil analytical results and LSA data confirm a railyard CCl4 source in track 69 on the east end of the classification yard. Soil analytical results and LSA data also confirm a railyard TCE source between tracks 65 and 66 on the west end of the classification yard. LSA and monitoring well data indicate additional CCI, and TCE sources on the Conrail railyard contributing to off-site groundwater contamination. LSA data and groundwater results provide additional information confirming a link between contamination on the Conrail railyard and groundwater contamination in County Road 1.

5-1

ZF3073.D7838

12 1 1 1 1 1

- The link between County Road 1 contamination and Charles Avenue contamination requires further investigation.
- The potential contributions from Fibertron and/or Elkhart Office Machine (EOM) require investigation. Landfarming of septic sewer waste in the open fields between County Road 1 and Vistula Avenue and landfarming and disposal facilities on Chizum's property both require investigation.
- An Ecological Assessment to address impact of contamination to the St. Joseph River, Baugo Bay, and the ponds on the Conrail railyard.
- A pump test to model contaminant transport and to evaluate alternatives for proper remediation of the site and vicinity.

The need for and scope of potential Phase III RI activities to address these data gaps will be discussed with EPA prior to recommending future work.

5-3

ZF3073.D7838

, , , , , ,

Conrail RI/FS
Phase II RI Technical Memorandum
Section 6
Revision 1 July 22, 1992

6. REFERENCES

- E & E, February 5, 1991a, "Work Plan for the Phase II Remedial Investigation and Phased Feasibility Study at the Conrail Site, Elkhart, Indiana," Chicago, Illinois.
- _____, February 5, 1991b, "Field Sampling Plan, Phase II Remedial Investigation and Phased Feasbility Study for the Conrail Site, Elkhart, Indiana," Chicago, Illinois.
- ———, February 5, 1991c, "Conrail Site, Elkhart, Indiana, Phase II Remedial Investigation Quality Assurance Project Plan," Chicago, Illinois.
- Fetter, C.W., Jr., 1980, *Applied Hydrogeology*, Charles E. Merrill Publishing Co., Columbus, Ohio.
- Freeze, R.A., and J.A. Cherry, 1979, *Groundwater*, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Imbrigiotta, Thomas E., and Angel Martin, Jr., October 1981, "Hydrologic and Chemical Evaluation of the Ground-Water Resources of Northwest Elkhart County, Indiana," USGS, Water Resources Division, Geological Survey Water-Resources Investigation 81-53.
- Interpex Limited, 1990, SLUGIX[™] User's Manual, Version 1.43, Copyright 1988, Golden, Colorado.
- Peerless-Midwest, Inc., (no date), water supply contractors, "Hydrogeologic Study, Enchanted Oaks Estates, Osceola, Indiana," Granger, Indiana.

Conrad RI/FS
Phase II RI Technical Memorandum
Appendix A
Revision 1 July 22, 1992

APPENDIX A

LEAD-SCREEN AUGER SAMPLING RESULTS

APPENDIX A

recycled paper

wology and environment

LEAD SCREEN AUGER (LSA) BORING RESULTS

CONRAIL
ELKHART, INDIANA

recycled paper

4 - 2 - 44

molecy and environment

Data Qualifiers for LSA Results

E Estimated value. Concentration is above upper end of calibration curve (500 µg/L).

Not detected.

J Estimated value. Present but below detection limit (5 ug/L). All chloroform values are estimated based on a one-point calibration curve.

Abbreviations of Target Compounds

TCA 1,1,1-trichloroethane

CCl, carbon tetrachloride

TCE trichloroethene

CHL chloroform

Other Abbreviations

NA Not analyzed for.

DB Decontamination Blank
(decontaminated equipment in parentheses).

LSA1 - Adjacent to MM2

			Result	s (ug/L)	
Dete	Sample No.	TCA	cc14	TCE	CHI
7/17/91	CR-LSA1-13-10	-	5.6	2.4	30
7/17/91	CR-LSA1-23-28	-	27	11	H.
7/17/91	CR-LSA1-33-38	-	110	20	W
7/17/91	CR-LSA1-43-48 43-48 Dup	- -	78 73	16 0 110	#1
7/17/91	CR-LSA1-53-58	-	86	26	32.0
7/17/91	Trip Blank	-	-	-	1 12
7/10/91	Field Slank	-	-	-	
7/18/91	CR-LSA1-63-68	-	92	450	11
7/18/91	CR-LSA1-73-78	-	210	1,400E	14
7/10/91	Field Blank	-	-	-	913
7/10/91	CB-LSA1-83-88	-	180	1,500E	=2
7/18/91	DS (Rock Pump)	-	35	560E	30
7/10/91	CR-LEA1-93-98	-	100	1,400E	14/
7/18/91	CR-LEA1-113-116	-	20	1,000E	M J
7/10/91	DB (Bailer)	-	-	43	11.7
7/18/91	CR-LSA1-133-134	-	•	540E	RJ
7/18/91	Trip Slank	-	-	13	21
7/19/91	CR-LSAI-143-148 So. 1 (Pitcher Pump Sample)	-	6	289	31.3
	CR-LSA1-143-148 Bo. 2	-	3	236	N
	143-148 No. 2 Dup (Keck Pump Sample)	-	4	380	N.
7/19/91	Nock Pump Docum Blk	-	1	82	M
7/19/91	Mater Drillers are using (Park Mater) Collected thru Hose	-	-	-	20

1.1

LSA2 - Van Diepenbos - Intersection of Tower Road & C.R.1

		Results (µg/L)				
Date	Sample No.	TCA	cc14	TCE	CHL	
7/20/91	CR-LSA2-6-11	-	-	120	NA	
7/20/91	CR-LSA2-13-18	-	-	9	NA	
7/20/91	DB (Keck Pump)	_	-	3J	NA	
7/20/91	DB (Bailer)	-	-	-	HA	
7/20/91	CR-LSA2-23-28 (Collected with Bailer)	-	-	13	A#	
7/20/91	CR-LSA2-23-28 (Collected with Keck Pump)	-	_	20	NA	
7/20/91	CR-LSA2-33-38-Keck Pump	-	_	23	NA	
•	33-38-Keck Dup	-	-	14	NA.	
	33-38-Bailer	-	-	6	AR	
	33-38-Pitcher Pump	-	-	7	NA.	
//20/91	CR-LSA2-43-48	-		33	NA	
7/20/91	CR-LSA2-53-48-3 vols-Keck Pump	_	-	12	MA	
	53-48-4 vols-Keck Pump		2	61	A SI	
	53-48-5 vols-Keck Pump	· -	1	30	NA	
/20/91	CR-LSA2-63-68-Bailer	-	40	110	NA	
7/20/91	Van Diepenbos Well - No Filter	-	•	-	AH	
7/20/91	CR-LSA2-73-78-Keck Pump*	-	40	2,300E	NA	
7/21/91	DB (Keck Pump)	-	-	40	AK	
7/21/91	CR-LSAZ-83-88	_	_	810	NA	
	83-88 Dup	-	-	840	NA	
7/21/91	CR-LSA2-93-98	-	-	750	NA	
7/21/91	CR-LSAZ-103-108	-	-	170	NA.	
7/21/91	DB (Keck Pump)	-	-	10	NA	
7/21/91	CR-LSA2-113-118	-	-	37	NA	
7/21/91	CR-LSA2-123-126	-	-	13	NA	
7/21/91	CR-LSA2-133-138	-	-	49	AH	
	Trip Blank				93	

*from here on, all samples taken with Keck Pump unless otherwise noted.

LSA3 - Sprague's Property

		Results (pg/L)				
Date	Sample No.	TCA	cc14	TCE	CHT.	
7/22/91	DB (Keck Pump)	-	-	10	-	
7/22/91	CR-LSA3-18-23	-	22	20	-	
7/22/91	CR-LSA3-28-33	-	68	140	-	
7/22/91	CR-LSA3-38-43 38-43 Dup	-	330 250	480 330	11J 9J	
7/22/91	CR-LSA)-48-53	-	500	350	323	
7/22/91	CR-LSA3-58-63	-	470	890	33.7	
7/22/91	CR-LSA3-68-73	-	260	510	363	
7/22/91	DB (Reck Pump)	-	-	14	-	
7/22/91	DS (Reck Hose)	-	~	13	-	
7/22/91	CR-LSA3-78-83	-	210	580	203	
7/22/91	CR-LSA3-88-93	-	130	220	63	
7/22/91	CB-LSA3-98-103	-	130	340	73	
7/23/91	CR-LSA3-108-113 108-113 Dup	-	110 76	400 270	73 53	
7/23/91	CB-LSA)-118-123	-	80	390	263	
7/23/91	CB-LSA3-128-133	-	33	640	73	
7/23/91	DB (Reck Pump)	-	-	26	-	
7/23/91	CR-LSA3-138-143	-	9	360	-	
7/23/91	Trip Blank	-	-	-	_	

^{*} All chloroform concentrations based on a one-point calibration.

LSA4 - McPhee's - On Ash Road

			Results	(µg/L)	
Date	Sample No.	TCA	cc1 ₄	TCE	CHL
7/24/91	CR-LSA4-18-23	_	420	130	9.5
	18-23 Dup	-	400	120	93
7/24/91	CR-L\$A4-28-33	-	12	7	-
7/24/91	CR-LSA4-38-43	-	2Ј	2,5	23
7/29/91	CR-LSA4-48-53	-	-	-	-
	48-53 Dup	-	-	7	-
7/29/91	CR-LSA4-68-73	-	190	-	293
7/29/91	DB (Keck Pump)	-	10	-	-
7/29/91	CR-LSA4-78-83	-	960E	-	503
7/29/91	CR-LSA4-88-93-Keck Pump in Riser	-	1,300£	-	1303
	CR-LSA4-88-93-Keck Pump in Screened Section	-	1,9008	-	28 0 J
7/29/91	CR-LSA4-98-103	-	1,3002	-	180J
7/29/91	CR-LSA4-108-113	-	1,100£	-	130J
7/29/91	Trip Blank	-	-	-	-
7/30/91	CR-L5A4-118-123	_	700	35	1303
	118-123 Dup	_	1,000	67	2203
7/30/91	CR-LSA4-128-133	-	16	50	-
7/30/91	DB (Keck Pump)	10	24	-	-
7/30/91	CR-LSA4-138-143	-	150	_	50J

LSA5 - Elkhert Surplus Salvage

•	/31/91 CR-LSA5-13-18 13-18 Dup /31/91 CR-LSA5-23-28 /31/91 CR-LSA5-33-38 /31/91 CR-LSA5-43-48 /31/91 DB (Keck Pump) /31/91 CR-LSA5-53-58	Results (pg/L)				
Date	Sample No.	TCA	cc1	TCE	CHIL	
7/31/91	- -	-	\$1 2	-	- -	
7/31/91	CR-LSA5-23-28	-	7	-	-	
7/31/91	CR-LSA5-33-30	-	•	-	-	
7/31/91	CR-LSA5-43-48	-	51	-	-	
7/31/91	DB (Keck Pump)	-	-	-	-	
7/31/91	CB-LSA5-53-58	-	20	-	-	
7/31/91	CB-LSA5-63-68	-	•	-	-	
7/31/91	CB-LSA5-73-78	-	-	-	-	
7/31/91	Trip Blenk	-	-	-	-	

recycled paper

. . . :

crology and environment

LSA6 - Matthews - Elm Ridge Road - Just Worth of MW20

	•	Results (µq/L)				
Date	Sample Ho.	TCA	cc14	TCE	CHL	
8/1/91	CR-LSA6-13-18 13-18 Dup	7	4 <i>J</i> 5	15 15	-	
8/1/91	CR-LSA6-23-28	13	7	5	-	
8/1/91	CR-LSA6-33-38	-	13	-	-	
8/1/91	CR-LSA6-53-58	-	4 J	2Ј	-	
8/1/91	CR-LSA6-63-68	-	1J	-	-	
8/1/91	DB (Keck Pump)	-	23	-	~	
6/1/91	CR-LSA6-73-78	· -	3.J	-	-	
8/1/91	CR-L\$A6-83-88	-	-	-	-	
8/1/91	CR-LSA6-93-98	-	-	-	-	
8/1/91	Trip Blank	-	-	-	-	

LSA7 - Along South Side of U.S. 33 - Directly Across from Redwood Restaurant - LaRue Street Area

/2/91 CI-LI /2/91 CI-LI /2/91 CI-LI /2/91 CI-LI /2/91 CI-LI			Results	(rg/L)	
Date	Sample No.	TCA	cci 4	TCE	CHI
8/2/91	CR-LSA7-13-10 13-10 Dup	-	1J 1 J	-	-
0/2/91	CR-LSA7-23-28	-	13	67	-
8/2/91	CR-LSA7-28-33	-	-	160	-
6/2/91	CR-LSA7-33-38	-	-	89	-
8/2/91	CR-ESA7-38-43	-	-	6	-
1/2/91	CR-LSA7-43-48	-	-	-	-
1/2/91	CR-LSA7-48-53	-	-	-	-
0/2/91	CR-LSA7-53-58	-	-	-	-
8/2/91	CR-LSA7-63-68	-	-	-	-
9/2/91	DS (Keck Pump)	-	13	-	-
3/2/91	Trip Blank	-	-	-	-

1 7 . 34

LEAS - Between MW14 and MW23 Along U.S. 33

			Result	s (µg/L)	
Date	Sample No.	TCA	cci 4	TCE	CHL
8/3/91	CR-LSA8-6.5-11.5	_	33	43	_
	6.5-11.5 Dup	-	3.3	4 J	-
8/3/91	CR-LSA8-13-18	-	43	3J	-
8/3/91	CR-LSA8-23-28	13	3.3	5 J	-
8/3/91	CR-L5A8-33-38	-	. 6	8	-
8/3/91	DB (Keck Pump)	-	13	-	-
8/3/91	CR-LSA8-43-48	-	9	12	-
8/3/91	CR-LSA8-53-58	-	74	120	11J
8/3/91	CR-LSA8-63-68	-	27	2,600E	14J
8/3/91	CR-LSA8-68-73	-	13	3,1008	73
8/3/91	CR-LSA8-73-78	-	-	1.800E	5.3
8/3/91	CR-LSA8-78-83	_	13	1,600E	7,5
8/3/91	Trip Blank	-	-	-	-
8/4/91	DB (Keck Pump)	-	-	31	-
8/4/91	CR-LSA8-83-88 No. 1*	_	_	690E	_
	83-88 No. 2*	-	-	360	-
	63-66 No. 3*	-	-	360	-
8/4/91	CR-LSA8-93-98	_	_	110	_
-, -,	93-98 Dup	-	-	91	-
8/4/91	CR-LSA8-103-108	-	-	48	-
8/4/91	CR-LSA8-113-118	-	-	10	-
8/4/91	CR-LSA8-123-128	-	-	130	·
8/4/91	CR-LSA8-131-136	-	_	230	-
8/4/91	Trip Blank	-	-	-	-

No. 1, 2, and 3 refers to collecting sample after purging 1, 2, and 3 volumes, respectively. Purging took place with pump position in riser at top of water table, and sample was collected by submerging pump into screened section.

recycled paper

erology and environment

LSAS - E. Merphy's - Close to St. Joe River on Vistala

		Results (pg/L)				
Date	Sample #o.	TCA	cc14	TCE	CHL	
8/5/91	CR-LSA9-3-8	- -	7	58		
	3-8 Dup	-	5	61	-	
8/5/91	CR-LSA9-13-18	-	64	30	8.	
0/5/91	CR-LSA9-23-28	-	21	12	2.	
8/5/91	CR-LSA9-33-38	-	210	55	19.	
8/5/91	CR-EA24-43	-	390	190	37.	
8/5/91	CR-LSA9-53-58	-	72	46	-	
0/5/91	CR-LSA9-63-68	-	130	110	16.	
0/5/91	CR-LSA9-73-78	-	16	65	-	
0/5/91	CR-LSA9-83-88	-	-	•	-	
1/5/91	DS (Rock Pump)	-	3.7	-	-	
/5/31	CR-LSA9-93-98	-	13	92	4.	
0/5/91	CB-LSA9-103-100	**	228	35	54	
1/5/91	Trip Blank	-	-	-	-	
1/6/91	CR-LSA9-113-118 113-118 Dup	-	130 150	110 150	140. 170.	
8/6/91	CR-LSA9-123-128	-	-	10	-	
1/6/91	DB (Rock Pump)	-	23	13	-	
1/6/91	CR-LSA9-133-138	-	33	11	-	
1/6/91	CB-LSA9-143-148	-	•	58	-	
1/6/91	Trip Blank	_	-	-	_	

LSA10 - Upgradient of Alco Tool, South Side of U.S. 33

			Results	(ug/L)	
Date	Sample No.	TCA	cc14	TCE	CHL
8/7/91	CR-LSA10-13-18	-	48	32	_
	13-18 Dup	-	40	25	-
8/7/91	CR-LSA10-23-28	7	5	15	-
8/7/91	CR-LSA10-28-33	11	43	28	-
8/7/91	CR-LSA10-33-38	3 J	4 J	28	-
8/7/91	CR-LSA10-38-43	- 32	-	_	~
8/7/91	CR-LSA10~43-48	11	-	17	-
8/7/91	CR-LSA10-48-53	2,5	23	12	-
8/12/91	CR-LSA10-53-58	25	33	8	3.
	53-58 Dup	2.5	33	11	1.
8/12/91	CR-LSA10-63-68	-	13	3.5	-
8/12/91	CR-LSA10-73-78	-	. 13	33	-
0/12/91	CR-LSA10-83-88	_	IJ	3.5	_

LSA11 - Upgradient of POM, South Side of U.S. 33

			Results	(ug/L)	
Date	Sample No.	TCA	cc14	TCE	CHL
8/13/91	CR-LSA11-13-10 13-18 Dup	-	21 26	10 14	13
8/13/91	CB-LSA11-23-28	-	220	57	173
8/13/91	CR-LSA11-33-38	-	160	28	133
8/13/91	CR-LSA11-43-48	-	330	76	223
8/13/91	CR-LSA11-48-53	-	190	49	-
8/13/91	DS (Keck Pasp)	-	-	-	-
6/13/91	CR-LSA11-53-50	-	46	-	-
6/13/91	CB-LSA11-50-63	-	10	-	-
8/13/91	CR-LSA11-63-60	-	10	-	-
0/13/91	CB-LSA11-60-73	-	5	-	-
0/13/91	Trip Slank	-	-	-	-
8/14/91	CR-LSA11-78-83 78-83 Dup	-	33 33	3J 2J	-
0/14/91	CR-LSA11-00-93	-	13	-	-

endings and environment

1 6.10

LSA12 - Magyar's Property

		Results (ug/L)				
Date	Sample No.	TCA	cc14	TCE	CHL	
8/14/91	CR-LSA12-13-18	-	43	29	-	
8/14/91	CR-LSA12-23-28	-	13	3J	-	
8/14/91	CR-LSA12-33-38	-	31	29	-	
8/14/91	CR-LSA12-43-48	-	-	-	-	
8/14/91	CR-LSA12-53-58	-	-	-	-	
8/14/91	DB (Keck Pump)	-	-	-	-	
8/14/91	DB (Keck Hose)	-	-	-	-	
8/14/	Trip Blank	-	-	-	-	
8/15/91	CR-LSA12-63-68 63-68 Dup	-	-	-	-	
8/15/91	CR-LSA12-83-88	-	-	-	-	
8/15/91	CR-LSA12-103-108	-	-	-	-	
8/15/91	CR-LSA12-123-128		-	320	-	
8/15/91	CR-LSA12-133-138	-	-	430	-	
8/15/91	CR-LSA12-143-148	-	-	420	-	
8/15/91	Trip Blank	-	-	-	-	

LSA13 - Tutsy Property

		Results (#9/L)				
Dete	Sample No.	TCX	cci	TCE	CHIL	
6/16/91	CR-LSA13-13-18	-	-	-	-	
	13-14 Dup	-	-	-	-	
6/16/91	CR-LSAL3-23-28	-	1 J	12	-	
0/16/91	DB (Keck Pump)	-	-	5	-	
0/16/91	CR-LSAL3-33-30	-	13	53	-	
0/16/91	CR-L5A13-43-48	-	-	-	-	
0/16/91	CR-LSA13-53-58	-	-	-	-	
0/16/91	CR-LSAL3-63-68	-	13	11	_	
0/16/91	CR-LSA13-73-78	-	-	-	-	
0/16/91	Trip Blank	-	-	-	-	
0/17/91	CR-LSA13-83-86 83-88 Dup	-	1 J	5	3	
0/17/91	CR-LSA13-93-98	-	39	53	10	
8/17/91	CR-LSA13-103-100	_	15	79	10	
1/17/91	CB-LSA13-113-118	-	650€	250	39	
0/17/91	DB (Keck Pump)	-	13	3J	_	
8/17/91	CB-LSA13-123-128	-	730E	160	96	
1/17/91	CR-LSA13-133-130	-	93	33	21	
0/17/91	Trip Blank	_	_	-		

crober and environment

4+1-11

LSA14 - Near HW Corner of Tower Road at County Road 1

		Results (µg/L)				
Date	Sample No.	TCA	CC14	TCE	CHL	
8/18/91	CR-LSA14-13-18	_	33	78	-	
	13-18 Dup	-	43	91	-	
8/18/91	CR-LSA14-23-28	-	15	79	-	
8/18/91	CR-LSA14-33-38	-	100	1,000E	323	
8/18/91	CR-LSA14-43-48	-	190	1,000E	30.	
8/18/91	DB (Keck Pump)	-	13	10	-	
8/18/91	Trip Blank	-	-	-	-	
8/25/91	CR-LSA14-53-58	-	100	1,500E	523	
	53-58 Dup	-	130	1,900E	783	
8/25/91	CR-LSA14-63-68	-	16	950E	293	
8/25/91	CR-LSA14-73-78	-	8	620E	-	
8/25/91	CR-LSA14-83-88	-	. 5	830E	-	
8/25/91	CR-LSA14-93-98	-	. 43	1,400E	-	
8/25/91	CR-LSA14-103-108	-	13	9 2 Ó E	-	
8/25/91	CR-LSA14-113-118	-	13	370	-	
8/25/91	CR-LSA14-123-128	-	13	310	-	
8/26/91	DB (Keck Pump)	-	-	78	-	
8/26/91	CR-LSA14-133-138	-	-	64	_	
	133-138 Dup	-	-	132	-	
8/26/91	CR-LSA14-143-148	-	-	68	_	

LEA15 - Conrail Yard, North of Car Shop

		Results (sq/L)			
Date	Sample No.	TCA	cc14	TCE	CHL
8/20/91	CR-LSA15-13-10	-	_	19	
	13-18 Dup	-	15	6	-
8/20/91	CR-LSA15-23-28	-	23	490	-
0/20/91	CR-LSA15-33-30	13	43	75 9 E	-
0/20/91	DB (Keck Pump)	13	1.3	31	-
0/20/91	CR-LSA15-43-48	23	23	1.000E	3.
B/20/91	CR-LSA15-53-54	-	23	65 0 E	2.
8/20/91	CR-LSA15-63-68	-	-	360	-
3/20/91	CR-LSA15-73-76	-	-	120	-
8/20/91	CR-LSA15-83-88	-	-	30	-
0/21/91	CR-LSA15-93-98	_	13		-
	93-98 Dup	-	. 11	14	-
0/21/91	CR-LSA15-103-100	-	-	7	-
721/91	CR-LSA15-113-118	-	-	-	-
9/21/91	CR-LSA15-123-128	13	13	•	-
0/21/91	DB (Keck Pump)	-	-	•	_

LSA16 - Far East End of Conrail Property, SW of LSA 7

		Results (µg/L)				
Date	Sample No.	TCA	cc14	TCE	CHL	
8/27/91	CR-LSA16-13-18	-	13	15		
	13-18 Dup	-	15	53	-	
8/27/91	CR-L5A16-18-23	-	-	53	-	
8/27/91	CR-LSA16-23-28	-	-	10	-	
8/27/91	DB (Keck Pump)	-	-	33	-	
8/27/91	CR-LSA16-28-33	-	1 J	26	-	
8/27/91	CR-LSA16-33-38	· -	· •	3	-	
8/27/91	CR-LSA16-38-43	-	-	3	-	
8/27/91	CR-LSA16-43-48	-	-	6	-	
8/27/91	CR-LSA16-48-53	-		-	-	
8/27/91	CR-LSA16-63-68	_	IJ	16	_	

LEA17 Coursil Tard, Vicinity of Track 69

			Results	(pg/L)	
Dete	Sample Bo.	TCA	cci	TCE	CHI
8/28/91	CR-LSA17-8-13	-	3.3	75	-
8/28/91	CR-LSA17-18-23 18-23 Dup	-	-	7 5	-
0/20/91	CB-LSA17-28-33	-	-	43	-
0/20/91	CR-LSA17-38-43	33	13	4 J	-
0/20/91	CR-LEA17-48-53	\$1	-	-	-
8/29/91	CR-LSA17-58-63	5.7	-	23	-
8/20/91	CB-LSA17-68-73	-	-	-	-
8/29/91	DB (Keck Pump)	-	-	33	-
8/20/91	CB-LSA17-78-83	-	-	-	-
8/28/91	CR-LSA17-88-93	-	-	-	-
0/20/91	CR-LSA17-103-108	-	-	-	-
8/28/91	Trip Sleak	-	-	-	-

LGAIS - Courail Yard, Vicinity of Track 69, East of LSA17 at Beginning of Straightaway

		Results (µg/L)				
Date	Sample No.	TCA	cci 4	TCE	CHL	
8/29/91	CR-LSA18-13-18	_	43	67	1.3	
8/29/91	CR-LSA18+23-28 23-28 Dup	-	-	4J 3J	-	
8/29/91	CR-LSA18-33-38	~	-	3 J	-	
8/29/91	CR-LSA18-43-48	~	_	23	-	
8/29/91	DB (Keck Pump)	~	-	43	-	
8/29/91	CR-LSA18-53-58	-	-	-	-	
8/29/91	CR-LSA18-63-68	· 1J	-	-	-	
8/29/91	DB (Driller's Hose)	~	-	-	-	
8/29/91	CR-LSA18-73-76	57	-	-	-	
8/29/91	Trip Blank	-	· -	<u>.</u>	-	
8/30/91	CR-LSA18-93-98 93-98 Dup	-	-	1J- 2J	-	
8/30/91	CR-LSA18-113-118	~	-	1.3	-	
8/30/91	Trip Blank	_	-	2Ј	-	

ecology and environment

1/2

LEA19 - Contail Yard, SE of Car Shop

			Results	(pg/L)	
Doto	Sample No.	TCA	ccl	ACE	CHL
9/4/91	CR-LSA19-13-18	•	19	12	13
9/4/91	CR-LSA19-23-28	-	26	43	13
	23-28 Dup	-	29	33	11
9/4/91	CR-LSA19-33-38	-	41	23	13
9/4/91	CR-LSA19-43-48	-	3.3	-	-
9/4/91	DO (Keck Pump)	5	13	13	-
9/4/91	CR-LSA19-53-54	6	3.3	23	-
9/4/91	CR-LSA19-63-68	43	-	-	-
9/4/91	CR-LSA19-73-78	6	-	-	-
9/4/91	CR-LSA19-93-98	1 Ј	-	-	-
9/4/91	CB-LSA19-103-100	1.7	. 13	33	-
9/4/91	field Blank	_	-	-	_

recycled paper

embers and environment

1.5820 - North Side of Lumber Avenue, South of Contail Tracks

		<u></u>	Results	(µg/L)	
Dete	Sample No.	TCA	cc1 ₄	TCE	CHI
9/6/91	CR-LSA20-13-18	23	43	43	_
9/6/91	CR-LSA20-18-23	2J	3J	25	_
	18-23 Dup	15	23	-	-
9/6/91	CR-LSA20-23-28	-	15	-	-
9/6/91	CR-LSA20-28-33	-	15	-	-
9/6/91	DB (Keck Pump)	1.3	23	-	-
9/7/91	CR-LSA20-33-38	-	13	43	-
	33-38 Dup	-	1J	45	-
9/7/91	CR-LSA20-38-43	13	25	. 16	-
9/7/91	CR-LSA20-48-53	-	13	35	-
9/7/91	DB (Keck Pump)	-	-	-	-
9/7/91	CR-LSA20-58-63	-	· 13	· 3J	-
9/7/91	CR-LSA20-68-73	-	<u> </u>	_	-

LEA21 - ME Corner of Ponds South of Conrail Tard

			Results	(#9/L)	
Date	Sample No.	TCA	cc14	TCE	CILI
9/7/91	CB-LSA21-8-13	-	-	-	-
9/7/91	CR-LSA21-18-23	~	-	-	-
9/7/91	CR-LSA21-28-33	-	-	-	-
9/7/91	CR-LSA21-30-43	-	-	-	-
9/8/91	CB-LSA21-48-53 48-53 Dup	-	-	-	-
9/8/91	CB-LSA21-58-63	-	-	-	-
9/8/91	CR-LSA21-78-83	-	-	-	-
9/9/91	CB-LSA21-98-103	-	_	-	-
9/8/91	CB-LSA21-118-123	-	-	-	-
9/8/91	CB-LSA21-135-140	-	-	-	-
9/8/91	DS (Keck Pump)	-	•	-	-
9/0/91	Trip Blank	-	_	_	-

LSA22 - Conrail Tard, Vicinity of Track 69, East of LSA18, In Curve

	Sample No.	Results (µg/L)				
Date		TCA	cc1.	TCE	CHL	
9/9/91	CR-LSA22-8-13	_	96	-	-	
	8-13 Dup	-	140	-	15J	
9/9/91	CR-LSA22-18-23	•	3,800E	-	1,7003	
9/9/91	CR-LSA27-28-33	-	43	-	133	
9/9/91	CR-LSA22-38-43	-	. 8	-	-	
9/9/91	CR-LSA22-48-53	-	5	-	-	
9/9/91	CR-LSA22-DB-Keck	-	8	-	-	
9/9/91	CR-LSA22-58-63	-	13	-	-	
9/9/91	CR-LSA22-68-73	-	23	-	-	
9/9/91	CR-LSA22-78-83	-	14	14	-	
9/10/91	CR-LSA22-88-93	-	-	-	-	

LSA23 - Coursil Yard, Vicinity of Track 69, East of LSA22, In Curve

		Results (sg/L)			
Date	Sample No.	TCA	cc14	TCE	CILI
9/10/91	CB-LSA23-8-13	-	13	-	
/10/91	CB-L5A23-13-18	25	23	-	
	13-18 Dup	13	33	-	-
9/10/91	CR-LSA23-18-23	220	5,100g	-	-
0/10/91	CB-L5A23-23-26	190	9,100E	-	-
/10/91	DE (Neck Pump)	-	52	-	-
9/10/91	CR-LSA23-28-33	24	1,1002	-	-
7/10/91	CR-L\$A23-33-36	14	56 0 E	-	

7-5-11

LSA24 - North Side of Lusher Avenue, South of Conrail Tracks, West of LSA20

		Results (ug/L)				
Date	Sample No.	TCA	cc14	TCE	CHL	
9/10/91	CR-LSA24-8-13	-	40	-	_	
9/10/91	CR-LSA24-13-18	-	40	-	-	
9/11/91	DB (Keck Pump)	-	26	-	-	
9/11/91	CR-LSA24-Drillers System	-	31	-	-	
9/11/91	CR-LSA24-18-23	_	14	-	-	
9/11/91	CR-LSA24-23-28	-	17	· _	_	
•	23-2# Dup	-	10	-	-	
9/11/91	CR-LSA24-28-33	-	6	-	-	
9/11/91	CR-LSA24-33-38	-	8	-	-	
9/11/91	CR-LSA24-38-43	-	12	-	-	
9/11/91	CR-LSA24-43-48	-	5	-	-	
9/11/91	CR-LSA24-53-58	-	5	-	-	
9/11/91	CR-Drillers Tank	-	-	-	-	
9/11/91	CR-Drillers Pump	-	-	-	-	
9/11/91	CR-Second DB (Keck Pump)	-	-	-	_	

LSA25 - Within Coursil Classification Yard, East of Car Shop, Botween Track Groups 4 and 5

		Results (mg/L)			
Dete	Sample No.	TCA	cc14	TCE	CH
9/18/91	CR-LSA25-13-18	_		300£	
	13-16 Dup	-		2088	•
9/10/91	CR-LSA25-23-28	-	26	420	
9/18/91	CR-LSA25-33-38	-	41	160	
9/18/91	CR-L5A25-43-48	-	4	5,200E*	
9/18/91	DB (Keck Pump)	-	-	24	
/18/91	CB-LEA25-53-58	1,5	23	5,400E*	
0/10/91	CR-ESA25-63-68	23	23	4.000E*	
9/10/91	CB-65A25-73-76	•	5	2.600E	
9/10/91	CR-LSA25-03-00	-	-	320	
9/18/91	CR-ESA25-93-98	-	6	1,2005	
9/19/91	DO (Eeck Pump)	-	-	240	
9/19/91	CR-LSA25-103-108	-	-	820E	
9/19/91	DB (Keck Pump) (with acetome)	-	-	100	-
9/19/91	CR-LSA25-113-118	-	-	1.100E	
/19/91	CR-LSA25-123-128	-	•	930£	
/20/91	CR-LSA25-133-130	-	-	73	
/19/91	CR-LSA25-143-148	_	6	190	

^{*} Co-elluting peek interference in quantitation

LSA26 - Conrail Yard, EME of Car Shop

		Results (µg/L)			
Date	Sample No.	TCA	cc14	TCE	CHL
9/20/91	DB (Keck Pump)	-	-	4	-
9/20/91	Db (Keck Pump) (hot water)	-	6	64	-
9/20/91	CR-LSA26-8-13	-	9	25	~
9/21/91	CR-LSA26-18-23	-	69	63	-
9/21/91	CR-LSA26-28-33	-	22	330	-
9/21/91	CR-LSA26-38-43	-	-	7,200E	25.
9/21/91	CR-LSA26-48-53	-	-	6,800E	24.
9/21/91	DB (Keck Pump)	-	-	1,000E	-
9/21/91	CR-LSA26-58-63	-	-	4,000E	
9/21/91	CR-LSA26-68-73	-	-	3,6002	14.
9/21/91	CR-LSA26-78-83	-	5	2,200E	-
9/21/91	CR-LSA26-88-93	-	43	1.900E	_

LSA27 - South of Ponds South of Conrail Tard, Between West and Central Ponds

Date .	Sample No.	Results (sq/L)			
		TCA	cc1 ¹	TCE	CHI
9/22/91	DB (New Keck Tube)	-	-	_	-
9/22/91	CR-LSA27-8-13	-	-	4J	-
	8-13 Dup	-	-	33	-
9/22/91	CR-L5A27-18-23	-	-	-	-
9/22/91	CR-LSA27-28-33	-	-	-	-
9/22/91	CR-LSA27-38-43	-	-	29	-
9/22/91	DB (Keck Pump)	-	-	-	-
9/22/91	CR-LSA27-48-53	-	-	-	-
9/22/91	CR-LSA27-58-63	-	-	-	-
9/22/91	CB-LSA27-68-73	-	-	-	-
9/22/91	CR-LSA27-78-83	-	-	-	-
9/22/91	Trip Slank	_	_	_	_

LSA28 - Conrail Yard, Vicinity of Track 69, NE of LSA23, In Curve

Date	Sample No.	Results (ug/L)			
		TCA	CC14	TCE	CHL
9/23/91	CR-LSA28-8-13 8-13 Dup	=	- -	39 8	-
9/23/91	CR-LSA28-18-23	-	-	9	-
9/23/91	CR-LSA28-28-33	-	-	2Ј	-
9/23/91	CR-LSA28-38-43	-	-	3J	-
9/23/91	CR-LSA28-48-53	-	-	-	-
9/23/91	CR-LSA28-58-63	-	-	-	-
9/23/91	DB (Keck Pump)	-	-	-	_
9/23/91	CR-LSA28-68-73	-	-	-	-
9/23/91	CR-LSA28-78-83	-	-	-	-
9/23/91	Trip Blank	-	_	-	-

LSA29 - Classification Yard, Between Track Groups 7 and 8, 1,980 Peet West of Beginning of Straightaway

Date	Sample No.	Results (pg/L)				
		TEX	cc14	TCE	CHI,	
9/24/91	CR-LSA29-8-13	-	-	1.700E	150	
	6-13 Dup	-	-	1,600E	150	
9/24/91	CR-LSA29-18-23	-	-	530E	413	
9/24/91	CR-LSA29-28-33	-	-	640E	-	
9/24/91	CR-LSA29-38-43	-	-	7,500€	130	
9/24/91	CR-LSA29-48-53	-	-	330	-	
9/24/91	DO (Reck 1)	-	-	190	-	
9/24/91	00 (Keck 2)	-	-	31	-	
9/24/91	CR-LSA29-58-63	-	-	140	-	
9/24/91	CR-LSA29-68-73	-	-	46	-	
9/24/91	CR-LSA29-78-03	_	-	1.500E	_	

LSA30 - Classification Yard, Between Track Groups 7 and 8, 2,400 Feet West of Beginning of Straightaway

Dete	Sample No.	Results (ug/L)				
		TCA	ccl 4	ICE	CHL	
9/25/91	CR-LSA30-8-13	-	-	14	-	
	8-13 Dup	-	-	23	-	
9/25/91	CR-L\$A30-10-23	-	-	110	-	
9/25/91	CR-LSA30-21-26*	-	3,100E	1,200E	1,800E	

* Drill met refusal at 26 feet below ground surface.

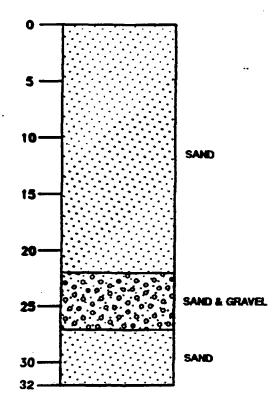
Conrail RMFS
Phase II RI Technical Memorandum
Appendix B
Revision 1 July 22, 1992

APPENDIX B

GEOLOGIC SOIL BORING LOGS

B-1

ZF3073.D7838


recycled paper

4 1 1

reduce and reviewment

Project Name	Conrail site	
Project No	ZF3000	
Date Prepared		
Prepared by _		

Boring No. B20
Location 19.5' E., 23.75' S. of NE
pillar of Car Shop
Owner U.S. EPA
Ground Elevation
Top of Inner Casing Elev. N/A
Drilling firm Bergerson Caswell
Geologist L. Lueck
Start & Completion Date 9/16/91
Type of Rig CHE75
Method of Drilling Hollow stem auger

BORING DATA

Boring Diam. 8"

Boring Depth 32'

Boring Abandonment:

Grout Enviroplus bentonite

TEST DATA

Depth to Water Level:
While Drilling 10.8'

7660:1

558047

recycled paper

Project Same Project Sumber		Boring No. 820
Melacc semest	27 3000	

					Ι
No.	Somple Depth Frem - To (ft)	Blow Count	Recov.	Description	Remarks
1	0 - 2	26/40/32	12	Black fine to medium sand, some gravel, grading down to silty sand; dry.	Probable fill material. OVA 0 ppm.
2	2.5 - 4.5	12/13/26	•	Top 6": Brown fine sand, some suit; moist (SM). Bottom: Black sulty sand, some gravel; moist (SM).	OWA 5 ppm.
3	5 - 7	0/5/8	•	Brown fine to medium sand, trace silt, trace gravel in upper few inches: moist (SP).	OVA 6 ppm.
•	7.5 - 9.5	6/6/10/8	13	Tannish brown fine to sedium sand, some gravel: soist (SW).	OWA 10 ppm.
5	10 - 12	9/8/6/7	13	Tam fine to coarse sand, trace fine to medium gravel: saturated (SW).	OVA 4 ppm.
6	12.5 - 14.5	0/8/10/14	16	Brown to black fine to coarse sand, some fine to coarse gravel, trace silt: saturated (SW).	OVA 0 ppm.
7	15 - 17	12/10/	17	Brown fine to medium sand, trace coarse sand, trace medium gravel: saturated (SW).	OVA 0 ppm.
•	17.5 - 19.5	5/13/ 14/6	15	Same as above, lighter brown (SW).	OVA <1 ppm.
•	20 - 22	14/14/ 30/28	12	Light brown fine to medium sand. little gravel: saturated (SP).	OWA 0 ppm.
10	22.5 - 24.5	6/11/ 21/26	16	Light brown medium to coarse sand and fine to medium gravel: saturated (SN-CN).	OVA 0 ppm.
:1	25 - 27	11/17/ 25/2 5	10	Same as above except trace silt: saturated (SW-GW).	OVA 1 to 2
. 5	27.5 - 29.5	11/21/ 23/20	13	Brown medium to coarse sand, trace gravel; some downward coarseming; saturated (SM).	ота 6 ррш.
	30 - 32	14/19/ 21/36	19	Brown medium to coarse sand, little fime to medium gravel, trace silt: saturated (SM).	E.O.B. @ 32'. OVA 0 pps.
		,			
		 - !			
		- [<u> </u>

Project Name	Conrail site	_
Project No	ZF3000	_
		_
		_
Date Prepared	·	_
Prepared by _		_

0		
0		
	.	
		*
		ľ
	r • . ' • . ' • . ' • . ' • . ' •	
		l
	l • '	l .
		ł
.		ŀ
		Į.
		1
	• . · • . · • . · • . · •	
		!
		į
		ļ
		i
	k	
		ł
10		
10-		
	「 ・ . ' ・ . ' ・ . ' ・ . ' ・ . ' ・ . '	
	[• • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • •	
	i. '	
	1.* • . • . • . • . • . • . • . • . • . •	
15		SAND
, ,		
-		
·		
20		
20		
20-		
20		
20		
20		
20		
20		
20		
20		
20-		
20		
20		

Boting No	o. <u>821</u>
Location	25.5' E., 9.5' N. of NE pillar
of Car S	ihop
Owner	U.S. EPA
Ground El	evation
Top of In	mer Casing Elev. N/A
Drilling	Firm Bergerson Caswell
Geologist	L. Lueck
Start & C	Completion Date
Type of R	tig CME75

BORING DATA

Boring Abendonment:
Grout Enviroplug bentonite

TEST DATA

Depth to Water Level:
While Drilling 10'

7660:1				558047
1000:I	•	•		23000

recycled paper

Project Name Project Pumber	Boring No.	921
,		

Sample So.	Sample Depth From - To (ft)	31ew Count	Recev. (is.)	Description	Remarks
1	9 - 2	19/27/	17	Top 15": Black to gray silt, send, and gravel, probably fill: dry. Bottom: Brown fine to medium sand; moist (SP).	Used 3" split spoon to get larger sample OWA 3 ppm.
2	2.5 - 4.5	17/19/ 26/27	16	Reddish brown fine to medium sand, trace gravel; moist (SP).	OWA 1 ppm.
3	5 - 7	11/9/9/9	10	Top 2": Black to brown silty clay and clayey silt, some gravel: noist (HL-CL1. Bottom: Reddish brown fine to medium sand; noist (SP).	OVA 4 ppm.
•	7.5 - 9.5	3/3/1/3	20	Top 2": Brown silty clay and clayey silt; moist (ML-CL). Bottom: Medium brown fine to medium sand, trace fine gravel (SWI.	OVA <1 ppm.
5	10 - 12	9/15/ 27/25	16	Brown medium to coarse sand and fine to coarse gravel: trace silt: saturated (SW-GW).	OVA 4 ppm.
6	12.5 - 14.5	19/37/ 26/25	15	Top 9": Brown medium to coarse sand and fine to medium gravel (SW-GW). Bottom: Hedium brown fine to medium sand; saturated (SP).	OWA 0 ppm.
7	15 - 17	5/6/10/15	15	Hedium brown fine to medium sand, trace coarse send: saturated (SP).	?" split spoor sample due to blowup. OVA 0 ppm.
	17.5 - 19.5	7/9/15/12	15	Medium to coarse sand, little fime to coarse gravel, trace silt; saturated (SW).	OVA 0 ppm.
•	20 - 22	15/23/ 25/25	19	Same as above (SW1,	OWA 0 ppm.
10	22.5 - 24.5	3/10/ 15/17	15	Brown fine to medium sand grading downward to fine to medium grave); saturated (SM-GW).	OWA 8 pps.
11	25 – 27	3/10/ 15/18	15	Brown fine to coarse sand, little fine to medium gravel, trace silt; saturated (SW).	E.O.B. @ 27". OVA 1 ppm.
J					
! !		 			
	N				
		! !			

្រូវ៖

Project Name Conrail site
Project No. ZF3000

Date Prepared
Prepared by

V	1	1
-		1
	l	ſ
		l
		3
		3
		l
		\$
		i
] ' · · · · · · · · · · · · · · · · · ·	ţ
	.	!
5	[,	1
]	1
	! . '	l .
	1	i
	[· · · · · · · · · · · · · · · · · ·	1
		•
		•
10		
10		SAND
15		
-		
	. ˙ · . ˙ · . ˙ · . ˙ · . ˙ · . ˈ · . ˈ · . ˈ ·	
		•
20		
	0 0 0 0 0 0	
		i
	A	
	2 0 0 0 0 0 0	
1		
	P. 5. P. 2. 2. 2. 4. 6. 7. 7.	
		SAND & GRAVEL
(4 .00 .00 .00	
25	4 0 0 0 0 0 0 0	
	00 000 000	

Boring No. 822
Location 9' H., 8' W. of NW pillar of
Car Shop
Owner U.S. EPA
Ground Elevation
Top of Inner Casing Elev. N/A
Drilling Firm Bergerson Caswell
Geologist <u>L. Lueck</u>
Start & Completion Date 09/17/91
Type of Rig <u>CME75</u>
Method of Drilling Hollow stem auger

BORING DATA

Boring Diam. 8"

Boring Depth 27'

Boring Abandonment:

Grout Enviroplug bentonite

TEST DATA

		Comrail sito	Boring No.	822
Project	Puntot .	273000		

ample 50.	Sample Depth From - To (ft)	Count	Recov.	Description	Romerks
ı	0 - 2	15/24/ 24/32	10	Top 8": Black silty sandy gravel. Bottom 2": Crushed limestone gravel.	3" split spoom
2	2.5 - 4.5	12/10/	17	Top 4": Black silty clayer gravel. Bottom: Brown fine to medium sand, trace gravel: slightly moist (SW).	OVA 5 ppm.
1	5 - 7	5/0/0/10	10	Same as above; noist (SW).	OVA 8.5 ppm.
	7.5 - 9.5	6/9/8/11	19	Same as above, but slightly coarser; bottom 10° sacurated (SW).	OVA 3 ppm.
	10 - 12	4/5/9/17	17	Brown medium sand, grading down to medium to coarse sand and fine to medium gravel; saturated (SM-GW).	OVA 0 ppm.
•	12.5 ~ 14.5	9/13/	14	Brown medium send, little fine to medium gravel, grading down to fine to medium sand; saturated (SM).	OWA 0 ppm.
•	15 - 17	5/11/	16	Brown fine to medium sand, coarseming down- word; saturated (SW).	OWA 0 ppm.
	17.5 ~ 19.5	23/23/ 16/20	17	Brown medium to coarse sand, little gravel: saturated (SW).	OVA 8 ppm.
ì	20 - 22	5/15/ 21/27	10	Brown fine to medium sand, trace gravel, grading down to medium to coarse gravel, little coarse sand; saturated (SN-GN).	OVA è pps.
•	22.5 - 24.5	9/18/ 24/24	13	Fine to coarse gravel; some coarse sand; saturated (GM).	OVA 8 ppm.
1	25 - 27	8/26/ 30/35	17	Medium to coerse sand and fine to medium gravel: saturated (SM-GW).	E.O.B. @ 27'. OVA @ ppm.
į					
				 - 	
,				•	
•					

Ject Name Contail site		Boring No. B23
ject No. ZF3000		Location West of Car Shop
		Owner U.S. EPA
		Ground Elevation
• Prepared	·	Top of Inner Casing Elev. N/A
pered by		Drilling Firm Bergerson Caswell
		Geologist L. Lueck
		Start & Completion Date 09/17/91
		Type of Rig CME75
		Method of Drilling Hollow stem auger
0		
		BORING DATA
	0440	Boring Diam. 8"
5	SAND	Boring Depth 27'
		Boring Abendonment:
		Grout Enviroplug bentonite
	•	
		·
10		TEST DATA
0.40.00.00		
0.00.00000		Depth to Water Level:
6.20.90.00.00.00.00		While Drilling
0.0000000000000000000000000000000000000		
0.0.0.0.0.0.0		
15-0.00000000000000000000000000000000000		
0.00.000		•
0,00000000	SAND & GRAVEL	
0 0 0 0 0 0 0		
0 0 0 0 0		
20		
60.000		
6.9 6.0 6.0 9.0 9.		
. 0.0.2.0.3.0.3		
09.00		
20.000		
25-000000000000000000000000000000000000		
0.90,000,000		
27		
		

recycled paper

7660:1

ecology and environment

Project Name Contail site Boring No. B23
Project Ramber 173000

		Γ			<u> </u>
Sample So.	Sample Depth From - To (ft)	Slow Count	Rocov. (im.)	Description	Romarks
1	0 - 2	45/69/ 50/40	19	Gravel, little sand, grading down to brown fine to medium sand, trace gravel; dry; (GW-SW).	3° split spoon. Equipment mel- function pre-
2	2.5 - 4.5	18/24/ 24/25	16	Reddish brown fine to medium sand, trace silt, trace fine to medium gravel; moist (SW).	vented OVA data collection.
3	5 - 7	1/4/4/9	19	Reddish brown fine to medium sand, trace gravel in top 27: moist (SW).	
4	7.5 - 9.5	17/20/ 11/12	19	Reddish brown fine to medium sand. little fine to coarse gravel: moist (SW).	
5	10 - 12	13/17/ 16/18	16	Medium brown fine to coarse sand and fine to medium gravel: saturated (SM-GM).	
6	12.5 - 14.5	17/15/ 10/20	17	Top 5": Hedium to coarse sand and fine to coarse gravel: saturated (SW-GW). Bottom: Fine to medium sand, some fine to medium gravel: saturated (SW).	
7	15 - 17	17/32/ 44/60	12	Medium to coarse send and fine to coarse gravel: saturated (SW-GW).	
•	17.5 - 19.5	30/44/ 55/65	11	Fine to coarse gravel, little fine to coarse sand; saturated (GM).	
•	20 - 22	69/100/ refusal	•	Top 5": Fine to medium sand: saturated (SP). Bettom: Fine to coarse gravel, trace sand; saturated (GW).	
10	22.5 - 24.5	3/5/ 79/100	14	Hedrum to coerse sand and fine to medium gravel, trace silt in bottom 2"; saturated (SW-GW).	2" split spoon this sample and next to try to recover more fines.
11	25 - 27	13/16/100	11	Cearse sand and fine to medium gravel: saturated (SP-GW).	E.O.S. @ 27*
		}			
	i I I				
				•	
	<u> </u>	<u> </u>			L

roject Name Conrail site	·	Boring No. <u>B24</u>
roject No. ZF3000		Location Track 69 area
		Owner U.S. EPA
		Ground Elevation
te Prepared		Top of Inner Casing Elev. N/A
repared by		Drilling Firm Bergerson Caswell
		Geologist C. Carlson
·	·	Start & Completion Date 10/01/91
		Type of Rig CHE75
		Method of Drilling Hollow stem auger
		· ·
		BORING DATA
5		Boring Diam. 8"
	•	Boring Depth 27'
	SAND	Boring Abandonment:
	•	Grout Enviroplug bentonite
10-		TEST DATA
		•
		Depth to Water Level:
		While Drilling 7'
000000000000000000000000000000000000000		
15-000000000000000000000000000000000000		
20.00	SAND & GRAVEL	
0 0 0 0 0 0 0		
0.0000000000000000000000000000000000000		
60 600 9.00.00		
20 (12/2)		•
	CLAYEY SLT	
Miching		
60,000,000,000		
25	GRAVEL	
27		

7660:1

558047

recycled paper

Project Bane Project Bumber		Bering No.	824
Make week	Of 1444		

Sample No.	Sample Depth From - To (ft)	Blow Count	Recev.	Description	Jone rks
1	0 - 2	9/12/	18	Yellowish brown fine to medium sand, trace coarse sand, trace clay and silt; dense; moist (SW).	Top 4" = top soil and railroad ballast. OVA 8 ppm.
2	2.5 - 4.5	10/11/	24	Same as above (SW).	OWA 0 ppm.
3	5 - 7	6/9/8/7	21	Top 5": Same as above (SW). Bottom: Brown coarse sand and coarse to fine gravel, little fine to medium sand, trace silt; medium dense; noist (SW-GW).	ота е рра.
•	7.5 - 9.5	14/20/ 21/25	15	Tellowish brown fine to medium sand, trace coarse sand, trace clay and silt: dense; saturated (SW).	OWA 0 ppm.
5	10 - 12	16/21/ 25/30	15	Same as above (SW).	OVA 3 ppm.
•	12.5 - 14.5	10/16/ 30/35	15	Top 12": Same as above (SM). Sottom: Brown coarse to fine gravel and coarse sand, trace fine sand; very demoe; saturated (GM-SF).	OWA 9 ppm.
7	15 - 17	40/20/ 22/25	15	Top 12": Brown medium to coarse sand and fine gravel, trace fine sand and silt; dense: Saturated (SW-GP). Betton: Brown fine to medium gravel and coarse sand with 1/2" and 2" clay stringers at 16' and 16.8', respectively; medium plasticity: moist to wet (GW-SP).	OVA 8 ppm.
•	17.5 - 19.5	20/30/ 30/30	24	Same as above except with little clay, little coarse gravel, trace cobbles: saturated (GM-SP).	OWA 0 ppm.
•	20 - 22	5/12/ 14/20	16	Brown clayey silt, some fine sand, trace coarse sand and fine gravel; dense; wet to saturated (ML-SH).	OVA 0 ppm.
10	22.5 - 24.5	5/12/ 20/30	24	Top 12": Same as above (RL-SR). Botton: Brown coarse to fine gravel, little coarse to fine sand, trace silt and clay; medium dense: saturated (GW).	OTA 0 pgm.
11	25 - 27	10/12/ 24/26	19	Same as above (GM).	E.O.B. 6 27'. OVA 0 ppm.
			:		
		_			

Project Name Conrail site
Project No. ZF3000

Date Prepared Prepared by

0		,
•		Ì
		ŀ
		ł
		i
		ł
		i
		ł
		ł
5		1
•		1
		ì
		Į.
	T. • • • • • • • • • • • • • • • • • • •	
		Í
		1
10		SAND
••		i
		ľ
15		
		ł
	.	
20-		
20		
	^ຽ ັ ^ດ ຊວິດຊວິດຊ	GRAVEL
	uuuuuuu	SLTY CLAY
	MAKKIMKKYYY	
	00 000 00	
25	וא מים פים פין	
	10 200 200 201	GRAVEL
	ຼຸວັວຸວັວ <u>ຸ</u> ວັວຸ	
~~		
//		

Boring No	825
Location	Track 69 area. East of 82
Owner	U.S. EPA
Ground El	evation
Top of In	ner Casing Elev. N/A
	Firm Bergerson Caswell
Geologist	R. Hackler
Start & C	ompletion Date 10/01/91
Type of R	igCME75
	-,
Method of	Drilling Hollow stem auges

BORING DATA

Boring Diam. 8"

Boring Depth 27'

Boring Abandonment:

Grout Enviroplug bentonite

TEST DATA

Depth to Water Level:

While Drilling <u>estimated at 7'-9'</u>

7660:1 558047

recycled paper

Project	Feet _	Conrail site	
Presect	Busher	ZF3668	

foring No. 825

Somple So.	Somple Depth From - To (ft)	Blow Count	Recev.	Description	Romarks
1	0 - 2	8/10/ 16/22	19	yellowish brown fine to medium sand, trace coarse send, trace silt and clay; dense; meist (SW).	Top 3"=top soil and railroad ballast. OVA 0 ppm.
2	2.5 - 4.5	12/15/ 16/20	20	Same as above (SW).	OVA 0 ppm.
3	5 ~ 7	6/8/16/18	22	Tep 12": Same as above (SW). Best 4": Gravel and cobbles (GW). Bettem: Light yellowish brown fine to medium sand, trace coarse sand, trace silt and clay; dense: noist to wet (SW).	OVA 1 ppm.
4	7.5 - 9.5	10/25/ 25/30	21	Same as above except very dense and naturated (SW).	OVA 0 ppm.
5	10 - 12	6/8/20/25	17	Same es above (SW).	OWA 0 ppm.
6	12.5 - 14.5	6/0/ 25/30	17	Same as above (SW).	OVA 9 ppm.
7	15 - 17	7/15/ 25/35	23	Same as above (SW).	OWA 0 ppm.
•	17.5 - 19.5	7/12/ 15/17	21	Same as above (SW).	OWA 0 ppm.
•	20 - 22	10/12/ 15/17	19	relievish brown coarse to fine gravel, trace samd and silt: two 1° clay stringers 6° apart near top of sample: desse; saturated (GM).	OVA 0 ppm.
10	22.5 - 24.5	6/6/7/12	12	Grayish brown silty clay, trace coarse gravel; very stiff; low plasticity; wet (CL).	Driller was cleaning out
*4	23.5 ~ 25.5	7/10/ 20/25	17	Top 3': Same as above (CL). Settom: Yellowish brown coarse to fine gravel, some coarse to fine sand, trace silt and clay (GW).	blow-up. It was taken to be a sample due to uncertainty in the in-place nature of the samples. OVA for both 0 ppm.
11	25 - 27	7/12/ 16/17	17	Same as above (GW1,	E.O.B. @ 27'. GVA @ ppm.
	;				
	:			ļ	

oject N	Tame Conrail site	Boring No. B26
oject N	io. ZF3000	Location Track 69 area. East of 825
		Owner U.S. EPA
		Ground Elevation
to Prop	ered	Top of Inner Casing Elev. N/A
	by	
	•	Geologist R. Hackler
		Start & Completion Date 10/01/91
		Type of Rig CHE75
0-	100000000000000000000000000000000000000	Method of Drilling Hollow stem auge
		nechod of otiliting notion stem sage
_		BORING DATA
5		•
		Boring Diam. 8"
•		Boring Depth 29.5'
		Boring Abandonment:
		Grout Enviroplug bentonite
10-		_
10-	¬sa	•
		TEST DATA
		Depth to Water Level:
		While Drilling~8.5'
15-		
1.5		•
		·
20-		
		WEL.

	SL	TY CLAY
	60000000	
25-		
	6000000	
	Logo Social GRU	WEL
	P ° 000000000000000000000000000000000000	
	0,000,000	
29.5 —	1.00.000	

7660:1

11

558047

recycled paper

		Conreil site	Bering No.	826
Project	Person _	2/3000		

icaple No.	Sample Repth From - To (ft)	Blow Count	Recev.	Description	Remerks
1	0 - 2	18/20/ 24/25	20	Top 7": Black soil and railroad bellest. Bortom: Yellowish brown fine to medium sand, trace coarse sand, gravel, silt: very dense; moist (SP).	OWA # ppm.
2	2.5 - 4.5	8/12/ 19/10	17	Same as above except sand coarseming down- ward, becoming reddish (SW).	OWA 1/2 ppm.
3	5 - 7	5/8/19/16	10	Tep 12": Same as above grading down to gravel and cobbles (SW-GW). Settom: Tellowish brown fine to medium sand, trace coarse sand, silt, clay; dense; moist (SW).	OTA 8 ppm.
4	7.5 - 9.5	7/15/ 20/22	19	Same as above except saturated (SW).	OWA 6 ppm.
5	10 - 12	10/12/ 15/24	24	Same as above except also trace gravel (SW).	OWA 6 ppm.
6	12.5 - 14.5	10/30/ 30/35	19	Same as above (SW)	OWA 0 ppm.
7	15 - 17	6/15/ 29/25	21	Same as above (SW).	OVA 6 pps.
	17.5 - 19.5	5/5/6/15	22	Same as above (SW).	Little coarse gravel in shoe. OWA 0 ppm.
•	26 - 22	19/15/	24	Top 12": Same as above (SM). Bettom: Tellowish brown coarse to fine gravel with little coarse to medium sand; (1" clay stringer in middle of sample); dense; saturated (GM).	OWA 9 ppm.
l 0	22.5 - 24.5	25/25/ 20/31	19	Top 6": Same as above (GM). Ment 4": Silty clay (CL). Betton: Tellowish brown coerse to fine gravel, little coerse to medium sand, traces silt, clay; very dense: saturated (GM).	OVA 8 ppm.
13	25 - 27	10/15/ 30/35	16	Same as above (GW).	OTA 0 ppm.
13	27.5 - 29.5	7/15/ 46/45	19	Same as above (GW).	E.O.B. @ 29.5'. OVA 0 ppm.
!	'				
;	: 				

Project Name	Conrail site	
Project No	ZF3000	
Date Prepared		
Prepared by		

5 —	SAND
20-	
30	SLT
40	SAND

Boring No	٠	827					
Location	W. y	ard	between	tracks	63	and	64
OWREE	U.S.	EPI	<u> </u>				
Ground El	evatı	on _					
Top of In							
Drilling	Firm	801	rgerson (Caswell			
Geologist	R	. H	ckler				
Start & C	omple	tion	Date _	10/02	/91		
Type of R	ig _	CMI	75				
Method of	Dril	ling	Hollo	stem :	auge	<u> </u>	
Method of	Dril	ling	Hollo	stem :	auge	<u>-</u>	_

BORING DATA

Boring	Diam.	8".		
Boring	Depth	44.5		
Boring	Abando	nment:		
Grant	En	vironlua	hentonite	

TEST DATA

epth to i	fater L	ivel:
While D	illing	7'

7660:1 558047

recycled paper

		Conrail site	Boring No.	827	Page 1 of 2
Presect	Punbo I	173000			

Sample Bo.	Sample Dopth From - To (ft)	Slow Count	Recov.	Description	Remarks
1	0 - 3	6/11/ 12/20	17	Top 6": Black scil and relirond bellest. Bottom: Tellowish brown fine to medium sand, trace coarse sand, silt, clay; moist (SW).	3" split spoon ex- cept where noted. OWA 8 ppm.
2	2.5 - 4.5	12/12/	19	Top 12": Same as above (SW). Bottom: Yellowish brown medium to coarse sand. little fine gravel, trace medium gravel, sand, silt, clay: medium dense; moist (SW).	OWA 6 ppm.
3	5 - 7	6/14/ 18/20	16	Same as above except trace coarse gravel; dense; wet to saturated (SW).	OWA 0 ppm.
•	7.5 - 9.5	18/25/ 27/32	20	Same as above except with 2" dark brown silt stringer at 0.5"; saturated (SW).	OWA 0 ppm.
5	10 - 12	40/30/ 40/35	11	Yellowish brown medium to coarse sand, some coarse gravel, little fine gravel, trace medium gravel, sand, silt, clay; very dense; saturated !5W1.	Large granite cobble stuck in drive shoe. OWA 8 ppm.
6	12.5 - 14.5	40/30/ 32/30	15	Same as above (SW).	OVA 0 ppm.
•	15 - 17	23/23/ 20/30	23	Same as above except trace coarse gravel (SWI)	OWA 6 ppm.
•	17.5 - 19.5	0/16/ 25/30	24	Same as above (SW).	1.5' blowup. OWA 0 ppm.
•	20 - 22	29/95/ refusel	19	Same as above (SW).	Difficult drilling. Used 2" split speen this sample.
10	22.5 - 24.5	W.D.	•	No sample attempted due to boulder or cobbles (GP).	Difficult drilling. OWA reading not taken.
11	25 - 27	W.D.	•	Tellow-brown silt, some fine to medium sand, traces clay, coarse sand, fine gravel; extremely dense; wet (ML-SH).	2° split speen. OVA 9 pps.
15	27.5 - 29.5	80+/ refusal	24	Same as above: saturated (ML-SM).	Blowup? O7A 9 ppm.
13	30 - 32	190+/ refusal	2	Same as above "L-SM).	Recemery probably is blowup. 07A reading not taken.
14	32.5 - 34.5	100/30/ 40/30	24	Brown silt. little clay and fine sand, trace medium and coarse sand: extremely dense: saturated (ML);	2" split spoon. OWA 0 cpm.

roject	Mame Conrail site	Boring No.	B27 ·	Page 2 of 2	
roject	Number ZF3000	-			

ample No.	Sample Depth From - To (ft)	Blow Count	Recov. (in.)	Description	Remarks
15	35 - 37	40/80/	22	Same as above (ML).	2" split spoon. OVA 0 ppm.
16	37.5 - 39.5	80/50/ 80/85	12	Same as above (NL).	2" split spoon, 3" was unsuccess ful. OVA 0 ppm.
17	40 - 42	50/25/ 25/30	10	Grayish-brown fine sand, little silt, trace clay and medium sand; very dense; wet (5M).	2" split spoon. OWA 0 ppm.
18	42.5 - 44.5	N.D. = N.D. = no data	•	Same as above (SW).	E.O.B. @ 44.5'. OVA reading not taken.
		, .			
					•
			:		! !

Project Home Conrail site	Boring No 828
Project No. 273000	Location W. yard between tracks 63 and 6
	Owner U.S. EPA
	Ground Elevation
Date Prepared	Top of Immer Casing Elev. S/A
Propered by	Drilling Firm Bergerson Caswell
	Geologist C. Carlson
	Start & Completion Date 10/03/91
	Type of Rig CHE75
0 ———————	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Method of Drilling Hollow stem auger
-Y Y X	hermon of printing worlde stem spidet
SETY CLAY	
7////	
	DORING DATA
5 —	Boring Diem. 8"
	Boring Dopth
	Boring Abendonment:
	Grout Enviroping bentonite
SAD L GRANE.	
	TEST DATA
10	Depth to Water Level:
	While Drilling 6.75'
-4.50.000	
→ :	
15 —	
- SAID	
一下 : (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
20 —	
GRAVEL	
24.5	
660:1	558047

recycled paper

couler and continuous

Project		Conrail site	Boring No.	B28
Project	Number	273000		

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
1	0 - 2	8/6/ 23/55	20	Top 6": Black soil and railroad ballast. Next 6": Brown coarse to fine sand, some clay and silt; dense; moist to wet (SW). Bottom: Dark gray silty clay to clayey silt, trace coarse to fine sand, trace fine gravel; very dense; dry (ML-CL).	OVA 200 ppm.
2	2.5 - 4.5	110/50/ 42/42	16	Top 3": Same as above with coarse gravel; saturated (ML-CL). Bottom: Yellowish brown fine to medium sand, trace coarse sand and silt; very dense; moist to wet (SW).	OVA 500 ppm.
3	5 - 7	15/15/ 28/50	20	Yellowish brown clayey sand and gravel, some cobbles, very dense; saturated (SW-GW).	OVA (ppm.
4	7.5 - 9.5	14/24/ 30/35	25	Brown coarse sand and gravel; little fine to medium sand. trace silt; dense; saturated (SW).	OVA 1/2 ppm.
5 ·	10 - 12	14/23/ 23/25	18	Same as above, grading down to medium to coarse sand with little coarse to fine gravel; dense; saturated (SW).	OWA 0 ppm.
6	12.5 - 14.5	14/23/ 30/35	20	Brown coarse to medium sand, some coarse to fine gravel, grading downward to fine to medium sand, trace fine gravel; dense; saturated (SW).	OVA O ppm.
י	15 - 17	25/35/ 45/55	24	Brown medium to coarse sand, little coarse to fine gravel, little fine sand; dense; saturated (SW).	OVA 0 ppm.
8	17.5 ~ 19.5	16/25/ 26/30	. 24	Same as above (SW).	OVA <1 ppm.
9	20 - 22	5/0/ 15/26	24	Top 9": Same as above except trace fine gravel (SW). Bottom: Brown coarse to fine gravel, some coarse to fine sand, trace cobbles; dense; saturated (GW).	OVA 0 ppm.
10	22.5 - 24.5	7/12/ 15/20	20	Same as above (GW).	E.O.B. @ 24.5'. OVA G ppm.

, .

ct No. 273000	Boring No. B29 Location W. yard between tracks 63 and
	Owner U.S. EPA
	Ground Elevation
Propored	Top of Inner Casing Elev. B/A
red by	Drilling Firm Borgerson Caswell
	Goologist <u>C. Carlson</u>
	Start & Completion Date 10/03/91
	Type of Rig CHE75
	Method of Orilling Split spoons only
000000	SORTES DATA
·{ <i>X/X/X/X/X</i> /	
SETY CLAY	Boring Diam. 3"
<i>-{XXXXXXX</i>	Boring Dopth 6'
	Boring Abendonment:
XXXXXXX	Grout
	TEST DATA
240	Beech on Motor Jamela
	Depth to Mater Level: While Drilling Rot encountered

recycled paper

7660:1

sample and continuous

			•	
Project Project	Number	Conreil site	Boring No.	829

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
1	0 - 2	8/8/ 28/62	24	Top 3": Brown sandy soil. Next 3": Light gray crushed gravel fill. Next 6": Yellowish brown silty coarse to fine sand; wet (SM). Bottom: Dark gray clayey silt to silty clay, some fine sand, trace coarse sand and fine gravel; very dense; dry (ML-CL).	OVA >1.000 ppm.
2	2 - 4	8/18/ 55/62	20	Top 9": Same as above but wet to saturated (ML-CL). Bottom: Very pale brown to coarse to fine sand, some coarse to fine gravel, trace silt; dense; moist to dry (SW).	OWA >1,000 ppm.
3	4 ~ 6	16/19/ 40/50	12	Same as above (SW).	E.O.B. 0 6'.
				·	

Boring Bo. __ 830 Project Nemo Contail site Location W. yard between tracks 63 and 64 Owner U.S. EPA Ground Elevation Top of Inner Casing Elev. 3/A Date Propered Drilling Firm Borgerson Caswell Propored by Goologist _____C. Carlson Start & Completion Date 10/03/91 Type of Rig ___CHE75 Nothed of Drilling Split spoons only BALLAST BORLES BATA Sering Diem. Poring Dopth Porting Abendonment: SAID TEST BATA Depth to Mater Level: While Drilling Bot encountered

7660:1

558047

recycled paper

cology and continuous

Project	Name	Conrail site	Boring No.	830
Project	Mumber	ZP3000		

Sample No.	Sample Depth From - To (ft)	Blow	Recov.	Description	Remarks
1	0 - 2	6/8/ 30/32	24	Top 4": Brown sandy soil and rock; moist. Next 3": Light gray crushed gravel. Mext 7": Yellowish brown silty coarse to fine sand; dense: moist (5W). Next 4": Dark gray silty clay to clayey silt (ML-CL). Bottom: Pale brown coarse to fine sand, some coarse to fine gravel, trace silt; dense; moist (5W).	OWA 7 ppm.
2	2 - 4	26/36/ 30/30	24	Same as above (SW).	CVA 70 ppm in borehole.
3	4 - 6	12/28/ 29/35	12	Same as above (SW).	E.O.B. @ 6'.
	·				
			[
					·
	,				
				·	

Project Base	Comrail site	
Project So	273000	
	 	
Date Propered		
Properted by		

Boring Bo	
Location	W. yard between tracks 63 and 64
Owner	U.S. EPA
Ground El	evation
Top of In	mor Casing Elev. 3/A
Orilling	Pirm Bergerson Caswell
Geelogist	C. Carlson
Start & C	empletion Date 10/03/91
Type of B	is <u>CE75</u>
Hothed of	Drilling Split spooms only

• —		
1 —		SELTY CLAW
2 —		
3 —	OXXXXXXXX	
4		C4970
5 —		SAND
_		

Boring	Di am .	3-				
Boring !	Dopth	6.				
Soring .	Nbendos	ment:				
Growt	Ent	riroplu	g be	aton	te	

DORIDG BATA

TEST DATA

Depth to Water Level:
While Drilling | Not encountered |

660:1		558047

recycled paper

Project	Name	Conrail site	Boring No. B31	
Project	Number	ZF3000		

Sample No.	Sample Depth From - To (ft)	Slow Count	Recov.	Description	Remarks
1	0 - 2	5/10/ 20/36	24	Top 6": Black soil and gravel. Next 8": Dark brown coarse sand, trace fine to medium sand and fine gravel: saturated (SW). Bottom: Dark gray silty clay to clayey silt, trace coarse to fine sand and fine gravel; dense; moist to wet (ML-CL).	OVA >1,000 ppm in borehole.
2	2 - 4	12/17/ 21/35	24	Top 10": Same as above: saturated (ML-CL). Bottom: Very pale brown coarse sand, some coarse to fine gravel, trace fine sand; dense; moist (SW).	OVA 200 ppm.
3	4 - 6	20/23/ 30/31	12	Same as above (SWI.	E.O.B. @ 6'. OVA reading of sample not taken.
				·	
				·	
				·	
		·			
•					

Project Heme Conrail site	Boring No. 832
Project No. 273000	Location W. yard between tracks 63 and 6
	Owner U.S. EPA
	Ground Elevation
Date Proposed	Top of Inner Casing Elev. H/A
Propered by	Drilling Firm Borgorson Caswell
	GoologistC. Carlson
	Start & Completion Date 10/03/91
	Type of Rig CHE75
	Nothed of Drilling Split speems only
DALLAST, CLAV. & SET	Boring Diem. 3" Boring Depth 6' Boring Abendeament: Grewt Enviroplus bentomite
4 — SAID	TEST SAYA
	Depth to Water Level:
	While Drilling Bot encountered

7660:1 558047

erology and emironaea

Project	Name	Conrail site	Boring No.	B32
Project		273000	•	

no.	Sample Depth from - To (ft)	Blow Count	Recov.	Description	Remarks
1	0 - 2	10/12/	20	Top 8": Black soil and crushed gravel. Next 8": Dark gray clayey silt to silty clay, some coarse to fine sand, trace coarse to fine gravel: saturated (ML-CL). Bottom: Yellowish brown to coarse to fine sand, trace coarse to fine gravel and silt; dense; wet (SW).	OVA 700 ppm in borehole.
2	2 - 4	30/32/ 30/35	20	Top 6": Same as above (SW). Bottom: Very pale brown coarse sand and fine gravel, trace fine to medium sand; dense; moist (SW).	OVA 70 ppm in in c. sand at 4'.
3	4 ~ 6	12/18/ 17/15	16	Same as above (SW).	E.O.B. @ 6'. OVA reading of sample not taken
		,			
•					•
				,	
				·	

Bering Be. ____ B33 Project Heme Contail site Project No. 273000 Location W. yard between tracks 63 and 64 Owner U.S. EPA Ground Elevation Top of Inner Casing Elev. Date Propored Propered by __ Drilling Firm Borgerson Caswell Geologist _____ C. Carlson Start & Completion Date __10/03/91 Type of Rig ___CHE75 Method of Stilling Split speems only BORIDO DATA Boring Diam. Boring Dopth ___6' Boring Abandonment: Grout ___Enviroplug boutomite SAID TEST MEA Dopth to Mater Level: While Drilling Mot encountered

7660:1 550047

recycled paper

61.

ecology and contrasticat

Project	Name	Conrail site	 Boring No.	833
Project.	Mumber	ZF3000		

Sample No.	Sample Depth From - To (ft)	Blew Count	Recov.	Description	Remarks
1	0 - 2	7/15/ 21/23	24	Top 4": Black topsoil. Next 5": Light gray crushed gravel (fill). Bottom: Yellowish brown coarse sand, some medium to fine sand, trace coarse to fine gravel; saturated (SW).	OVA 0 ppm.
2	2 - 4	9/15/ 19/30	24	Same as above (SW).	OVA 0 ppm.
3	4 - 6	16/21/ 27/48	12	Same as above (SW).	E.O.B. @ 6'. GVA 0 ppm.
				·	

reject Neme Conrail site	Boring No. 234 Location W. yard between tracks 63 and 6
	Owner U.S. EPA
	Ground Elevation
nto Propored	Top of Iuner Casing Elev. H/A
reported by	Drilling Firm Borgorson Caswell
	Goologist C. Carlson
	Start & Completion Date 18/03/91
	Type of RigCHE75
	method of Brilling Split speems only
BALLAST	Section sector
	engine Non 3°
	Bering Diam. 3" Bering Depth 6'
2 —	Boring Abendrament:
	Great
3 — SAID	
4 —	THE DATA
	Annah da Mahan Kamala
5 — 3 (1) (1) (1)	Depth to Water Level: While Drilling _Not encountered

recycled paper

7660:1

ecology and environmen

Project	Hane	Conrail site	Boring No.	B34
Project	Number	ZF3000		

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
1	0 - 2	6/8/	20	Top 4": Black soil and railroad ballast. Next 4": Light gray crushed gravel (fill). Bottom: Yellowish brown coarse sand, some medium to fine sand, trace coarse to fine gravel; saturated (SW).	Equipment mal function pre- vented collec- tion of OVA readings.
2	2 - 4	24/26/ 23/20	24	Same as above (SW).	
3	4 - 6	20/22/ 17/50	14	Same as above (SW).	E.O.B. @ 6'
				,	
			1		
:					
		ı			
,		1			
i					
!					

, i

Boring No. B35 Project Home Contail site Location Southeast corner of Car Shop Project No. 273000 Owner ____U.S. EPA Ground Elevation Top of Inner Casing Elev. __ H/A Date Prepared Drilling Firm Bergerson Caswell Propered by Goologist C. Carlson Start & Completion Date ____18/84/91 Type of Rig ___CHE75 Method of Brilling Sollow stem auger ATAG SELECT Boring Diam. Sering Dopth Doring Abandonment: TEST DATA SAID Depth to Water Level: While Drilling 11'

recycled paper

7660:1

scaletic and contrastors

0142

Project	Name	Conrail site	Boring Mo.	635
Project		ZF3000		

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
1	0 - 2	14/11/ 12/21	24	Top 12": Black soil and crushed limestone fill. Bottom: Dark yellowish brown coarse sand, little fine to medium sand, trace silt and fine gravel; dense; moist (SW).	OVA 2 ppm.
2	2.5 - 4.5	8/10/ 10/10	20	Yellowish brown coarse sand, little coarse to fine gravel, little fine to medium sand, trace silt; medium dense; moist to wet (SW).	OVA 0 ppm.
3	5 - 7	1/4/5/6	24	Same as above (SW).	Note: this
4	7.5 - 9.5	6/4/5/4	20	Same as above, except loose (SW).	yellowish brown sand could be
5	10 - 12	4/8/12/16	20	Same as above, except grayish brown; medium dense; saturated (SW).	water main back- fill. Sample nos. 3 and 4 OVA 0 ppm. Sam- ple no. 5 OVA 1 ppm.
6	12.5 - 14.5	10/10/ 19/22	20	Top 15": Same as above (SW). Bottom: Brown fine to medium sand, little coarse sand, trace fine gravel and silt; dense; saturated (SW).	OVA reading not taken.
7	15 - 17	18/24/ 31/42	50	Top 6": Dark brown coarse sand, little fine to medium sand and coarse to fine gravel; dense; saturated (SW). Bottom: Brown fine to medium sand, little coarse sand, trace silt and fine gravel; very dense; saturated (SW).	OVA 1/2 ppm.
\$	17.5 - 19.5	6/28/ 35/71	20	Top 6": Same as above (SW). Bottom: Dark brown coarse sand, little coarse to fine gravel, trace fine to medium sand and silt; extremely dense; saturated (SW).	E.O.B. @ 19.5', OVA reading not taken.
•				. !	
				·	
		·			

Project Mass Conrail site	Boring No
Project No. 273000	Location H. side of pends, 100' 5. of
	of southernmont rail
	Owner
Date Propered	Ground Elevation
Proposed by	Top of Inner Casing Elev H/A
	Drilling Firm Bergerson Caswell
	Goologist
	Start & Completion Date 18/84/91
	Type of RigCHE75
	Method of Drilling Hellow stem auger
	
	BORESS DATA
5 —	Doring Diam. 8"
	Boring Digith 22'
7:3:3:3:3:3	Boring Abendennent:
- 구 호호호호하	Grout Enviroplus bontomito
	Taritable contracts
	TROT BATA
10 — 340	
	Dopth to Water Level:
	While Drilling 6'
1 .00000001	
15	
-1:	
7.3333333	
20 —	
22	

7660:1

crology and environment

Project	Name		Boring No.	836
Project	Number	ZF3000		

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarka
1	0 - 2	2/4/6/12	24	Top 12": Dark brown sandy soil, coarse to fine sand: loose; moist. Bottom: Dark yellowish brown medium to coarse sand, some fine sand, trace silt and fine gravel; medium dense; moist (SW).	OVA 3 ppm in augers.
2	2.5 - 4.5	8/13/ 14/17	16	Top 6": Same as above (SW). Next 6": Dark brown clayey sand: wet: (SC). Bottom: Dark brown coarse sand, some silt and clay, trace coarse to fine gravel: dense; wet (SM-SC).	ОVА 8 ррш.
3	5 - 7	15/34/ 50/70	6	Same as above with little coarse to fine gravel; saturated (SM-SC).	May have pushed a rock. OVA 60 ppm.
4	7.5 - 9.5	50/25/ 37/37	0	No recovery.	Probably pushed a cobble. OVA reading not taken.
5	10 - 12	11/26/ 26/22	16	Light yellowish brown coarse to fine sand, trace silt, little coarse to fine gravel; dense; saturated (SW).	OVA 30 ppm.
6	12.5 - 14.5	35/35/ 25/20	24	Same as above, except with some coarse to fine gravel; dense; saturated (SW-GW).	OVA 60 ppm.
7	15 - 17	11/22/ 25/27	20	Brown coarse sand and fine gravel, little fine to medium sand and coarse gravel; dense; saturated (SW-GW).	OVA 35 ppm.
a	17.5 - 19.5	6/16/ 21/24	24	Top 12": Same as above (SW-GW). Bottom: Brown fine to medium sand, little coarse sand, trace silt and fine gravel; dense; saturated (SW).	OVA <1 ppm.
9	20 - 22	4/6/12/31	24	Brown medium to coarse sand and fine gravel, coarsening downward with increasing gravel, little fine sand; dense; saturated (SW-GW).	E.O.B. @ 22'. OVA 0 ppm.
•		·			
				·	

Bering No. __ B37 Project Pene Conrail site Location W. yerd, E. of 838 Owner U.S. EPA Ground Elevation Top of Innet Casing Slev. B/A Date Prepared Drilling Firm Borgerson Caswell Propored by __ Goologist _____ C. Carlson Start & Completion Date ___18/08/91 Type of Rig ____CHE75 Method of Orilling Mellow stem auger boring Diam. __8" Bering Depth 24.5" boring Abendesment: Grout <u>Enviroplus beateaite</u> THEFT BATA 10 SAID Depth to Water Level: While Drilling 10' 15 -7660:1 558047

ccology and co-business

Project	Name	Conrail site	Bering No.	837
Project	Number	Zf3000		

	·		,		·
Sample No.	Sample Depth From - To (ft)	Slew Count	Recov.	Description	Remarks
1	0 - 2	11/17/ 22/20	16	Top 6": Black soil and crushed gravel. Bottom: Dark yellowish brown fine to medium sand. trace coarse sand and fine gravel, trace silt; dense; moist (SF).	OVA <1 pps.
2	2.5 - 4.5	11/7/7/6	18	Same as above, grading down to coarse to fine sand, some coarse to fine gravel at 4'; medium dense; moist to wet (SW).	OWA 0 ppm.
3	5 ~ 7	4/4/4/4	20	Same as above (SW).	OVA 0 ppm.
4	7.5 - 9.5	8/4/6/6	18	Top 6": Same as above (SW). Bottom: Dark yellowish brown coarse sand, some coarse to fine gravel, little fine to medium sand, trace silt, medium dense; moist to wet (SW-GW).	OVA 0 ppm.
5	10 - 12	5/6/7/11	20	Brown coarse sand and fine gravel, little medium sand, trace silt and coarse gravel; medium dense; saturated (SW-GW).	OVA 0 ppm.
6	12.5 - 14.5	9/14/	16	Brown coarse sand, little fine gravel, trace fine to medium sand and coarse gravel; medium dense; saturated (SW).	OVA 0 ppm.
7	15 - 17	40/30/ 20/23	16	Same as above (SW).	OVA 4 ppm.
8	17.5 - 19.5	20/15/ 17/18	20	Brown coarse to fine sand. little coarse to fine gravel, trace silt; medium dense; saturated (SW).	OVA 20 ppm.
9	20 - 22	0/10/ 10/20	14	Brown coarse sand, little coarse to fine gravel, trace fine to medium sand; medium dense; saturated (SW).	OVA 5 ppm.
10	22.5 - 24.5	10/20/ 35/30	24	Same as above, some coarse to fine gravel; dense; saturated (\$W-GW).	E.O.B. @ 24.5'. OVA 3 ppm.
					·
				•	

Preject Heme Contail site	Boring NoB38
reject No. 273000	Location W. yard, S. of 828-832
	OwnerU.S. EPA
	Ground Elevation
ute Prepared	Top of Inner Casing Elev. M/A
repared by	Drilling Firm Borgorson Caswell
	Goologist C. Carlson
	Start & Completion Date 10/88/91
	Type of RigCEE75
0	Hethed of Drilling Hollow stem suger
-	
	BORISHO BAZA
-	Boring Diam
5 \$MD	Boring Dopth 19.5'
	Bering Abendonment:
	Growt <u>faviroplug bentomite</u>
	TEST DATA
	IESI ÇMIA
	Depth to Water Level:
10	Maile Drilling 18'
SAID & GRAVEL	
15	
19.5	

7660:1

558047

f encycled paper

ecology and environment

Project Name Conrail site	Boring No. Bla
---------------------------	----------------

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
1	0 - 2	7/9/12/17	20	Top 8": Black soil and crushed gravel. Bottom: Dark yellowish brown fine to medium gravel; medium dense, moist (SW).	OVA 0 ppm.
2	2.5 - 4.5	9/7/8/7	16	Same as above (SW).	OVA 0 ppm.
3	5 - 7	4/3/5/3	10	Top 12": Same as above (SW). Bottom: Dark brown coarse sand, little coarse to fine gravel, some clay, trace fine to medium sand and silt; loose; moist (SW).	OVA 0 ppm.
4	7.5 - 9.5	4/3/3/5	18	Same as above (SW).	OVA 0 ppm.
5	10 - 12	4/7/9/8	19	Brown coarse to fine sand and fine gravel, trace coarse gravel; medium dense; saturated (SW-GW).	OVA O ppm.
6 .	12.5 - 14.5	13/15/ 15/15	20	Same as above (SW-GW).	OVA 0 ppm.
7	15 ~ 17	10/12/ 12/10	18	Same as above (SW-GW).	OVA 0 ppm.
•	17.5 - 19.5	13/17/ 19/20	18	Same as above (SW-GW).	E.O.B. @ 19.5' OVA 1/2 ppm.
					•
			:		ī
		·			
				·	
	,				
1					
!					
	·				

Boring Bo. B39 Project Rese Contail site Location W. yard, E. of 837 Project No. 273000 Owner U.S. EPA Ground Elevation Top of Inner Casing Elev. Date Prepared Drilling Firm Borgersen Caswell Propored by __ Goologist <u>C. Carlson</u> Start & Completion Date __ 10/08/91 Type of Rig ___CHE75 Method of Drilling Hollow stem auger DORLES DATA SAID Soring Diam. Boring Dopth Doring Abendessest: TEST DATA Dopth to Water Lavel: While Drilling 10' SAND & GRAVEL 558047 7660:1

0150

crology and environment

		•	
Project Name Project Number	Conrail site	Boring No	

Sample No.	Sample Depth From ~ To (ft)	Blow Count	Recov.	Description	Remarks
1	0 - 2	4/7/7/16	20	Dark yellowish brown fine to medium sand, trace coarse sand, trace fine gravel; moist (SW).	Some crushed gravel mixed in at top, OVA 0 ppm.
2	2.5 - 4.5	15/8/7/0	16	Same as above (SW).	OVA 0 ppm.
3	5 ~ 7	7/9/5/5	15	Same as above (SW).	OVA 0 ppm.
4	7.5 - 9.5	10/12/ 13/16	24	Light yellowish brown medium to coarse sand and fine gravel, trace fine sand and coarse gravel; medium dense; moist (SW).	OVA 0 ppm.
5	10 - 12	0/7/0/9	24	Same as above except brown; saturated (SW).	OVA 0 ppm.
6	12.5 - 14.5	14/10/ 20/15	24	Same as above (SW).	OVA 0 ppm.
7	15 - 17	10/25/ 30/35	18	Same as above (SW).	Cobble in spoon. OVA 1/2 ppm.
8	. 17.5 - 19.5	100/80/ 75/90	•	Same as above (SW).	Large cobble in drive shoe. OVA 1/2 ppm.
9	20 - 22	9/17/ 23/26	20	Brown fine to medium sand, little coarse sand, trace silt and fine gravel; dense; saturated (SW).	E.O.B. @ 22'. OVA 3 ppm.
			,		
,					
į					

Conrail RMFS
Phase II RI Technical Memorandum
Appendix C
Revision 1 July 22, 1992

APPENDIX C SUBSURFACE SOIL ANALYTICAL RESULTS

C-1

ZF3073.D7838

DATA QUALIFERS

FIELD	PA	rah	ETER:	S

**	Designates field parameters were	not collected.
ORGANICS	DEFINITION	INTERPRETATION
J	Indicates an estimated value.	Compound value may be semiquantitative.
D	Identifies all compounds in an analysis at a secondary dilution factor.	Alerts data user to a possible change in the CRQL.
P	This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported and flagged with a "p".	

INORGANICS

QUALIFERS	DEFINITION	INTERPRETATION
1	Is an estimated value because of a QC Protocol.	Value may be semi-quanti- tative.
B	Value is real, but above in- strument DL and below CRDL.	Value may be quantitative or semi-quantitative.
Е	Estimated or not reported due to interference.	Compound or element was not detected or value may be semi-quantitative.
И	Spike recoveries outside QC protocols which indicates a possible matrix problem data may be biased high or low.	Value may be quantitative or semi-quantitative.
U	Post digestion spike for furnance AA analysis is out of control limits (35-115%), while sample absorbance is <50% of spike absorbance.	Value may be semi-quanti- tative.

1

ecology and environment

CHANTITATION LIMITS

Vater Samples - to calculate sample quantitation limit: (CRQL + dilution factor).

Soil Samples - to calculate sample quantitation limit: (CRQL + dilution factor)/(100-% moisture)/100).

The listed quantitation limits for soil/sediments are based on wet weight. The quantitation limits calculated by the laboratory for soil/sediment, calculated on dry weight basis as required by the contract, will be higher.

ethylbenzene styrene xylenes (total)

VOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils

ocation Sample Depth (feet) Date Sampled	CRB20 5-6.5 9/16/91	CR820 7.5-9.5 9/16/91	CRB20 10-12 9/16/91	CRB21 2.5-4.5 9/16/91	CRB2 1 5-7 9/16/91	CRB21 10-12 9/16/91	CRB22 2.5-4.5 9/16/91	CRB22 dup 2.5-4.5 9/16/91	CRB22 5-7 9/16/91	CRB22 10-12 9/16/9
VOLATILE ORGANICS(UG/KG) chloromethane promomethane vinyl chloride chloroethane										
nethylene chloride	1800	111	51	5 J	4J	4.3	31	4.00	2J	
cetone carbon disulfide	1800	650	150	84	19	170	160	180	170	10
, t-dichloroethene										
. 1 -dichloroethane										
, 2-dichloroethene (total)										
hloroform										
, 2-dichloroethane									•	
!-butanone (MEK)										
, 1, 1—Irichloroethone										
arbon tetrachlororide										
inyt acetate						•				
romodichloromethane										
1, 2-dichloropropone										
cis-1, 3-dichloropropene crichloroethene										
iibromochloromethane										
, 1, 2-trichloroethane										
penzane										
rans-1, 3-dichloropropene	•									
promoform										
l -methyl-2 -pentanone										
! -hexanone										
etrachloroethene										
oluene										2
I, 1, 2, 2—letrachloroethane										
;hlor obenzene										

VOLATILE ORGANIC COMPOUND ANALYTICAL HESIN TS Soil Borings - Subsurface Soils

Location Sample Depth (feet) Date Sampled	CR923 2.5-4.5 9/16/91	CR823 5-7 9/16/91	CRB23 10-12 9/16/91	CR824 5-7 10/01/91	CRB24 20-22 10/01/91	CRB24 22 5-24.5 10/01/91	CRB25 5-7 10/01/91	CRB25 20-22 10/01/91	CR825 23.5-25.5 10/01/91	CRB25dup 23.5-25 5 10/01/91
VOLATILE ORGANICS(UG/NG)										
chloromethane										
bromomethane										
vinyl chloride										
chlor gethane										
methylene chloride	31									
acetone	71	19	18						47001	
corbon disulfide										
1, 1-dichloroethene										
1. 1 - dichlor oethone										
1, 2 ~ dichlor bethene (tutal)										
chloroform					2300	3300D			12001	130001
1, 2-dichlor pethane										
2-butanone (MEK)						61				
1, 1, 1 -trichloroethane				_						
जा रेका विशेष्ट विभागति				11	27000	1.40000	21	8000	2.3000	(t0000D)
vinyl acetate										
bromodichlor ornelhone										
1, 2 -dichloropropone										
cis = 1. 3 - dichloropropene										
trichkovethene				12		33	12			:1
dibromochloromethane										
1, 1, 2-irichloroethone										
benzene										
frans-1, 5-dichloropropene bromotorm										
4 -methyl-2 -pentanone			7.1							
2 -hexanone			/ 3							
141rochloroethene						1.3	1,1			
Ioluene		5.1	16	7 j		3,	7J			12
1, 1, 2, 2-tetrochloroethane		,	10	/ J		33	/3			12
chlor obenzene										
ethylbenzene										
styrene										
xylenes (fotal)										

VOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils

Location Sample Depth (feet) Date Sampled	CRB26 2.5-4.5 10/01/91	CR826 22.5-24.4 10/01/91	CRB26 27~29 10/01/91	CRB27 10-12 10/03/91	CR828 0-2 10/03/91	CRB28dup 0-2 10/03/91	CRB28 2.5-4.5 10/03/91	CRB28 15-17 10/03/91	CRB29 0-2 10/03/91	CRB32 0-2 10/03/91
VOLATILE URGANICS(UG/KG)										
chloromethone										
bromomelhane										
vinyl chloride										81
chlor oethane										
methylene chloride					-					
acetone										
carbon disulfide										
1, 1-dichloroethene										
1, 1-dichlor oethane										
1, 2-dichloroethene (total)					110	91	73		100	5600D
chloroform 1. 2 -dichloroethane										
				,						22.1
2-butanone (MEK) 1, 1, 1-trichloroethane					131			11J	173	22J
carbon tetrachlororide			51							
vinyl acetale										
bromodichlorumethane										
1, 2~dichloropropane										
cis-1, 3-dichloropropena		•					-			
(richloroethene		_ម ្រ	8,1	51	15000D	13000D	240	6.1	13	170
dibr omochlor omethane				•	7000.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	
1, 1, 2-trichlor cethane						2 J				
benzene										
trans-1, 3-dichloropropene										
bromoform										
4 -methyl-2 -pentanone										
2-hexanone										
tetrachloroethene		2 J		2 J	4.5	3 J	3 J	4.5	1.3	· 2J
toluene		6 J	5 J			5 J				
1, 1, 2, 2-tetrachioroethane										
chlor obenzene										
ethylbenzene										
slyrene										
xylenes (total)					2J	3 J		51	3 J	24

Location Sample Depth (feet) <u>Date Sampled</u>	CR835 0-2 10/04/91	CR835 7.5-9.5 10/04/91	CR935 12.5-14.5 10/04/91	CR936 2.5-4.5 10/04/91	CR836 5-7 10/04/91	CR936 12.5-14.5 10/04/91	CR937 5-7 10/08/91	CR837 15-17 10/08/91	CR837 175-195 10/08/91	(.RB38 2.5-4.5 10/08/91
VOLATILE ORGANICS(UG/KG)										
chloromethane bromomethane										
vinyl chloride										
chloroethane										
multiylene chloride										
ucelone										
corbon disulfide										
I. I -dichlor outhers										
1. 1 - dichlor cethane										
1, 2 -dichlor cethene (tutal)										
chloroform										
1, 2 -dichloroethune										
2-butonone (MEK)			6.1							
1. 1. 1 = trichloroethane										
carbon Telmichboronde										
vinyl ocetale										
bromodichloromethane										
1, 2 -dichloropropone										
cis=1, 3-dichloropropene										
trichlowethene	81		11					1.3		
dibr omochior aniel hane										
1, 1, 2-Irichloroethane										
benzene										
frons-1. 3-dichloropropene										
bromoform										
4 -methyl-2 -peritanone										
2 -hexanone tetrachioroethene	•									
tetractionoethene toluene	7,		1,1		_					
1. 1. 2. 2 -tetrachloroethune	381	2.j	43	21	6.1	3.1	13	6 J	17	
chlor obenzene										
sihybenzene										
styrene										
xylenes (total)										

0150

VOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils

Location Sample Depth (feet) Date Sampled	CRB38 10-12 10/08/91	CRB38 15-17 10/08/91	CR839 5-7 10/08/91	CRB39dup 5-7 10/08/91	CRB39 15-17 10/08/91	CRB39 20-22 10/08/91		
VOLATILE ORGANICS(UG/KG)								
chloromethane								
bromomethane								
vinyl chloride								
chloroeihane								
methylene chloride								
acetone		310D			8000			
carbon disultide								
1, 1-dichlorgethene								
1, 1-dichloroethane								
1, 2-dichloroethene (total)								
chloroform								
1. 2 -dichloroethane								
2-butonone (MEK)						. 63		
1, 1, 1-trichloroethone		•						
carbon tetrachlororide								
vinyl acetale								
bromodichloromethane								
1, 2-dichloropropone								
cis-1, 3-dichloropropene								
trichloroethene		1.1			_ I1		•	
dibromochloromethane								
1, 1, 2—Irichloroethane								
benzene								
trans-1, 3-dichloropropene								
bromoform								
4 -methyl-2 -pentonone 2 -hexanone								
z = riexanorie								
toluene		31	73	27	9.1	19		
1, 1, 2, 2-tetrochloroethune		33	,,	21	93	13		
chior obenzene								
ethýlbenzene								
styrene								
xylenes (fulai)								

SEMIYULATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils

Location Sample Depth (feet) Date Sampled	CR920	CR820	CR820	CR821	CRB2 1	CRB2 1	CRB22	CR822dup	CR922	CR922
	5-6.5	7.5-9.5	10-12	2.5-4.5	5-7	10-12	2.5-4.5	25-4.5	5-7	10-12
	9/16/91	9/16/91	9/16/91	9/16/91	9/16/91	9/15/91	9/16/91	9/16/91	9/16/91	9/16/91
SEMIVOLATILE ORGANICS(UG/KG) phenol bis(2 -chloroethyl)ether										

1, 4 -dichlorabenzene benzył alcohol 1, 2 -dichlorabenzene

2 -methylphenol

bis(2 -chloroisopropyl)ether

4 -methylphenol

2 ~ chlorophenol 1, 3 ~ dichlorobenzene

n-nitroso-di-n-dipropylamine

hexachlor outhors

odrobenzene

isophorone

2 -nitrophenol

2, 4 -dimethylphenol

benzoic acid

bis(2-chloroethoxy)methane

2. 4 - dichlor ophenol

1, 2, 4 - Irichlor obenzene

naphthalene 1800J 200J

4 -chioroaniline

hexachlorobutadiene

4 -chlore-3 -methylphenol

2-methylnophthalene 15000 3900

hexachlorocyclopentadiene

2, 4, 5-Irichlorophenol

2. 4. 5-Irichlor ophenol

2 - chlor onaphthalene

2 -nitrognitine

dimeltiylphihalate

ocenophilitylene

2, 6 -dinitrotokulene

3 - nitroaniline

acenaphiherie 3

30000

780

SEMINOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils

Location	CRB20	CRB20	CR820	CR821	CRB2 1	CRB2 1	CRB22	CRB22dup	CRB22	CRB22
Sample Depth (feet)	5-6.5	7.5-9.5	10-12	2.5-4.5	5-7	10-12	2.5~4.5	2.5-4.5	5-7	10-12
Date Sampled	9/16/91	9/16/91	9/16/91	9/16/91	9/16/91	9/16/91	9/16/91	9/16/91	9/16/91	9/16/91
SEMIVOLATILE ORGANICS(UG/KG)										
2, 4-dinitrophenol										
4 -nitrophenol										
dibenzofuran	1600J	420 J								
2. 4-dinitrololuene										
diethylphthalate										
4 -chlorophenyl-phenylether										
fluorene	30001	890	63J							
4-nitrogniline			-							
4, 6-dinifro-2-methylphenol										
n-nitrosodiphenylomine				•						
4 -bromophenyl-phenylether										
hexachlor obenzene										
pentachior ophenal										
phenon/hrene	3800	1200 -	110J							
onthracene	1400J	340J						•		
di-n-butylphthalate	• • • •					221				231
fluoranthene	6600J	1500	130J							381
pyrane	6800J	1600	1301							30J
butylbenzylphthalate										•••
3. 3'dichlorobenzidine										
benzo a anthracene	1200J	270J								
chrysene	1500J	3001								
bis(2-ethylhexyl)phtholate	2400J	1703	540	491	71.1	683				
di-n-octylphihalate				-						
benzo b fluoranthene										391
benzolik illuoranthene										
benzo a pyrene										
indenol 1, 2, 3-cd pyrene										
dibenzo(a, h anthracene		•								
benzo[g, h. i]perylene										

SEMIVOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soli Borings - Subsurface Solis (conf...)

Location	* .	CR923	CRB23	CR923	CR924	CRB24	CRB24	CRB25	CRB25	CRB25	CR825dup
Sample Depth (feet)		2.5-4.5	5-7	10-12	5-7		22.5-24.5	5-7		23 5-25.5	
Date Sampled		9/16/91	9/16/91	9/16/91	_10/01/91	10/01/91	10/01/91	10/01/91	10/01/91	10/01/91	10/01/91

SEMIVOLATRE ORGANICS(UG/KG) phenol bis(2-chloroethyl)ether 2 -chlorophenol 1, 3-dichlorobenzene 1, 4 -dichlor obenzene benzyl alcohol 1. 2 -dichlor obenzene 2 -methylphenol bis(2-chloroisopropyl)ether 4 -methylphenol n-nitroso-di~n-dipropylamine hexachiorosthane nitrobenzene . isophorone 2 -nitrophenol 2, 4 -dimethylphenol benzoic ocid bis(2-chloroethoxy)methane 2. 4 - dichlor ophenol

551

2, 4, 6 = trichlorophenol
2, 4, 5 = trichlorophenol
2 = chloronaphthalene
2 = nitroaniline
dimethylphthalate
acenaphthylene
2, 6 = dinitrotolunene
3 = nitroaniline
acenaphthene

1, 2, 4 - Irichlorobenzene

naphthalene
4 -chior oaniline
hexachlor obut odiene
4 -chior o-3 -methylphenol
2 -methylnaphthalene
hexachlor ocyclopentodiene

SUMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils (cont..)

Location	CRB23	CRB23	CRB23	CRB24	CRB2 4	CRB2 4	CRB25	CRB25	CR825	CRB25dup
Sample Depth (feet)	2.5-4.5	5-7	10-12	5 -7	20-22	22.5-24.5	5-7	20-22	23.5-25.5	23.5-25.5
Date Sampled	9/16/91	9/16/91	9/16/91	10/01/91	10/01/91	10/01/91	10/01/91	10/01/91	10/01/91	<u> 10/01/91</u>

<i>:</i>	
SEMIVOLATILE ORGANICS(UG/KG)	
2. 4-dinitrophenol	
4 -nitrophenol	
dibenzofuran	
2, 4-dinifrololuene	
diethylphthalate	
4-chlorophenyl-phenyleiher	
fluorene	
4 — nitrooniline	
4, 6-dinitro-2-methylphenol	
n-nitrosodiphenylamine	
4bromophenylphenylether	
hexachlorobenzene	
pentachlor ophenol	
phenon#hr ene	831
anthr acene	
di-n-butylphthalate	
fluoranthene	2401
pyrene	230)
butylbenzylphtholate	
3. 3'dichlorobenzidine	
benzo[a]anihracene	1301
chrysene	170J
bis(2-ethylhexyl)phthalate	•
di-n-actylphthalate	
benzo(b)fluoranthene	150J
benzo[k]fluoranthene	140J
berizo a pyrene	100J
indeno 1, 2, 3-cd pyrene	
dibenzola, hijanthracene	
benzolg, h. i]perylene	

SEMIVULATE ORGANIC COMPOUND ANALYTICAL RESILTS Soil Borings - Subsurface Soils (cont..)

Location	CR928	CR926	CR826	CR927*	CH928	CR828dup	CR928	CR828	CR929	CN932
Sample Depth (feet)	2.5~4.5	22.5-24.5	27-29	10-12	0-2	0 -2	2 5-4.5	15-17	0-2	0-2
Date Sumpled	10/01/91	10/01/91	10/01/91	10/03/91	10/03/91	10/03/91	10/03/91	10/03/91	10/03/91	10/03/91

SEMIVOLATILE ORGANICS(UG/KG) phenol

bis(2-chloroethyl)etner

2 -chlor ophenal

1. 3-dichlorobenzene

1, 4 - dichlor obenzene

benzyl alcohol

1, 2-dichlorobenzene

2 -melhylphenol

bis(2-chloroisopropyl)ether

4 -methylphenol

n-nitroso-di-n-dipropylamine

hexachloroethane

nilr obenzene

isophorone

2 - nitrophenol

2, 4 -dimethylphenol

benzoic acid

bis(2 - chloroethoxy)methane

2. 4 - dichlor ophenol

1, 2, 4 - Irichlorobenzene

nophthalene

4 -chloroaniline

hexachlor obutacliene

4 -chloro-3-methylphenol

2-methylnophtholene

hexachlor ocyclopentacliene

2, 4, 6-irichlorophenol

2, 4, 5-Irichlorophenol

2 - chior anaphihalene

2 -nitropniline

dimethylphthainte

acenaphihylene

2, 6 -dinitrololunene

3 -nitrophiline

acencyhilhene

61.1

Location

SEMIVOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils (cont...)

CR827*

CRB28

CRB28dup

CRB28

CRB28

CRB29

CRB32

CRB26

CRB26

CRB26

Sample Depth (feet)	2.5-4.5	22.5-24.5	27-29	10-12	0-2	0-2	2.5-4.5	15-17	0-2	0-2
Date Sampled	10/01/91	10/01/91	10/01/91	10/03/91	10/03/91	10/03/91	10/03/91	10/03/91	10/03/91	10/03/91
SEMIVULATILE ORGANICS(UG/KG)										
2. 4 -dinitrophenol										
4-nitrophenol										
dibenzofuran										
2, 4-dinitrotoluene										
diethylphthalate										
4 -chlorophenyl-phenylether										
fluorene										
4 -ni trooniline										
4, 5—dinitro—2—methylphenol										
n-nitrosodiphenylamine										
4 -bromophenyl-phenylether	•				•					
hexachlorobenzene										
pentachlor ophenol										
phenonthrene										220J
anthracene										
di~n~butylphthalate										
fluoranthene						,73J	591			710J
pyrene					391	110J	77J			57 0 J
bulylbenzylphtholate										
3, 3'dichlorobenzidine										
benzo a janihracene				·			_			5101
chrysene						41J	47J			400j
bis(2—ethylhexyl)phthalate										
di-n-octylphthalate										
benzol b fluor anthene						38J	41J			480J
benzo[k]fluoranthene										410J
benzo(a)pyrene										330J
indeno 1, 2, 3-cd pyrene										3901
dibenzola, hijanthracene		•								6.5.4
benzo[g, h, i]perylene										2600

SCHIVOLATE CORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils (cont...)

Location	•
Sample Depth	(1001)
Date Sampled	

CRB38 CR835* CRU35 CR836 . CR836. CR836. **CR937 CRB37** CR837 **CRB35** 0-2 75-9.5 12.5-145 2.5-4.5 5-7 125-14.5 5-7 15-17 17.5-19 5 2 4-4.5 10/04/91 10/04/91 10/04/91 10/04/91 10/04/91 10/04/91 10/08/91 10/08/91 10/08/91 10/08/91

SEMIVOLATILE ORGANICS(UG/NG) phenol bis(2-chloroethyl)ether 2-chlorophenol 1. 3 - dichlor obenzene 1, 4 - dichlor obenzene benzyi **cicohoi** 1, 2 -dichlorobenzene 2 -methylphenol tiis(2 -chior oisopropyi)ether 4 -methylphenol n-nitroso-di-n-dipropylamine hexachloroethane nifrobenzene is aphor one 2 milcophenol 2, 4 -dimethylphenol benzoic ocid bis(2-chloroethoxy)methone 2, 4 ~ dichlor ophenol 1, 2, 4 - Irichlor obenzene naphthalene 4-chloroaniline hexachior obuladiene 4-chloro-3-methylphenol 2 -methylnophthalene hexachlor ocyclopent odiene 2. 4, 6-Irichlorophenol 2, 4, 5-trichlor ophenol 2 - chior onaphi halene 2-nitrophiline dimethylohtholule ocenoph!hylene 2. 6 -dinitrotolunene 3 - nitroonitine acunophthene

SEMIVOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils (cont...)

Location	CRB35*	CRB35	CRB35	CRB36*	CR836*	CRB36*	CRB37	CRB37	CRB37	CR838
Sample Depth (feet)	0-2	7.5-9.5	12.5-14.5	2.5-4.5	5-7	12.5-14.5	5-7	15-17	17.5-19.5	2.4-4.5
Date Sampled	10/04/91	10/04/91	10/04/91	10/04/91	10/04/91	10/04/91	10/08/91	10/08/91	10/08/91	10/08/91

SEMIVOLATILE ORGANICS(UG/KG)

2. 4 -dinifrophenol

4-nitrophenol

dibenzofuran

2, 4-dinitrololuene

diethylphthalate

4 -chlor ophenyt-phenylether

fluorene

4-nitrocniline

4, 6-dinitro-2-methylphenol

n-nitrosodiphenylamine

4-bromophenyl-phenylether

hexachlorobenzene

pentachiorophenoi

phenonthrene

anthrocene

di-n-butylphthalate

fluoranthene

pyrene

butylbenzylphthalate

3. 3'dichlorobenzidine

benzo a anthracene

chrysene

bis(2-ethylhexyl)phtholate

di-n-octylphthalate

benzo(b)fluor anthene

benzolk fluor onthene benzola pyrene

indeno 1, 2, 3-cd pyrene

dibenzo a, h anthracene

benzo(g, h, i)perylene

SEMIVOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils (cont...)

Location	CR838	CR938	CR939	CRB39 dup	CRB39	CR839	
Sample Depth (feet)	10-12	15-17	5-7	5-7	15-17	20-22	
Date Sampled	10/08/91	10/08/91	10/08/91	10/08/91	10/08/91	10/08/91	

SEMIVOLATILE ORGANICS(UC/KG)

phenol

bis(2-chloroethyl)ether

2 -chlorophenol

1. 3 - dichior obenzene

1. 4 = dichlor obenzene

benzyl alcohol

1, 2 -dichlor obenzene

2-methylphenol

bis(2-chloroisopropyl)ether

4 -melhylphenol

n-nitroso-di-n-dipropylamine

hexachlor aethane

nitrobenzene

isophorone

2 -nitrophenot

2. 4 -dimethylphenol

benzoic ocid

bis(2-chloroethoxy)methone

2. 4 - dichlor ophenol

1, 2, 4-frichlorobenzene

nochthalene

4 -chiorogniline

hexachlorobutadiene

4 -chloro-3-methylphenol

2 -methylnophthalene

hexachlorocyclopentadiene

2, 4, 6 - Irichlor ophenol

2. 4. 5 - Ir ichlor ophenol

2 - chloronaphthalene

2 -nitroaniline

dimethylphthalate

acenaphilhylene

2, 6 - dinitrotolunene

3-nitrocniline

acenophilhene

SEMIVOLATILE ORGANIC COMPOUND ANALYTICAL RESULTS Soil Borings - Subsurface Soils (cont...)

Location	CRB38	CRB38	CRB39	CRB39 dup	CRB39	CRB39	
Sample Depth (feet)	10-12	15-17	5-7	5-7	15-17	20-22	
Date Sampled	10/08/91	10/08/91	10/08/91	10/08/91	10/08/91	10/08/91	

SEMIVOLATEE ORGANICS(UG/KG)		
2, 4 -dinitrophenol		
4-nitrophenol		
dibenzofuran		
2, 4 -dinitrotokuene		
diethylphtholate		
4 -chlorophenyl-phenylether		
fluorene		
4 -nitrogniline		
4, 6 -dinitro-2 -methylphenol		
n-nitrosodiphenylomine		,
4-bromophenyl-phenylether		
hexachlor obenzene		
pentachlorophenol		
phengnithrene		
onthracene		
di-n-butylphthalate		56 J
fluoranthene		
pyrene		
but ylberi zylphthalate	•	
3, 3 dichlor obenzidine		
benzo a Janihracene		
chrysene		
bis(2~ethylhexyl)phtholale	57J	
di-n-octylphtholate		
benzo[b]fluor on thene	713	
benzo[k]fluoranthene		
benzola jpyrene	61J	
indeno[1, 2, 3-cd]pyrene		
dibenzo(a, h anthracene		
benzolia, h. ilperylene		

FESTIGIDES/PCBs COMPOUND ANALYTICAL RESIRTS Soil Borings - Subsurface Soils

Location Sample Depth (feet)	CR922 7.5-9 5	CR922dup 7.5-9.5	CR926 22.5-24 4 10/01/91	CRB28 15-17 10/03/91	CRÉ36 12 5-14 5 10/04/91
Date Sampled	9/16/91	9/16/91			
w/61/2014 /1/00-/200 /c6\					
PESTICIDES/PCBs(UG/kG) alpha BHC					
beta BHC					
delta BHC					
gamma BHC (lindune)					
Heptochlor					
Aldrin					
Heptachior epoxide					
Endosulfan I	/\ 	2.9.19			
Oieldrin 4. 4'-DDC	0 681	7 9 JP			
Endrin	/ 8PJ	449			
Endosullan #	, 51 3	771			
4. 4'-DDD					
Follosultan sultate	1.53	1901			
4, 4° DDT					
Methoxychlor (Moriate)	4 9 JP	5.439			
Endrin oldehyde	7 17				
Endrin kelone					
alpha Chlordane					
gamma Chioridane		0.71 J P			
Toxophene					
Aroclor 1016		•			
Aroclor 1221					
Aroclor 1232 Aroclor 1242					
Aroclor 1248					
Arucior 1254					
Aroclor 1260	65PJ	260			

TOTAL METAL ANALYTE ANALYTICAL RESULTS Soil Borings - Subsurface Soils

Location	CRB22	CR822dup	CRB26	CRB28	CRB36
Sample Depth (feet)	7.5~10.5	7.5-10.5	22.5~24.5	15-17	12.5-14.5
Date Sumpled	9/17/91	9/17/91	10/01/91	10/03/91	10/04/91
TOTAL METALS(MG/KG)					
aluminum	5560J	3360J	4780JE	1970JE	2040 JE
antimony					
arsenic	3.3	1.5B	4.1	1.88	2 3
barium	35.8B	13.88	15.9BJ€	5.88₺€	15.4BJE
beryllium				•	
cadmium	3.2	1.3	2.6	1.2	1.7
calcium	1470JE	1060 J €	98200JE	66700JE	67600JE
chromium	18.7J	7.3J	13.7	6.3	6.7
cobalt	5.19	2.98	48	28	3.3B
copper	11.9	6.5J	9	4.68	8.2
iron	12 30 0J	6610J	10200JE	4910J€	6720J€
lead	6.9JN	3.8JN	4	2.3	2.9
magnesium	1950	1140	20800	10100	12500
manganese	702J	1143	206 JEN	159JEN	197JEN
mer cur y					
nickel	158	78	12.7	4.4B	7 18
potassium	1020 8	51 9B	4778	269B	267B
selenium					
silver			•		
sodium	179BJ	1468J	1698J	1208J	131BJ
thallium			0.27BJ	0.3284	
vanadium	14.2	10.28	8.98	3.58	4 68
zinc	34.3J	21.1J	32.7	19.2	22

TUTAL ORGANIC CARBON ANALYTHIAL RESULTS Soil Borings - Subsurface Soils

Location	CRB22	CRB22dup	CR826	CRB28	CR936	
Sample Depth (teet)	7.5-9.5	7.5-9.5	22.5-24.5	15-17	12.5-14.5	
Date Sampled	9/17/91	9/17/91	10/01/91	10/03/91	10/04/91	
101AL ORGANIC CARBON	0.21 J	0.3 8 (J	1.31 J	1 7 9 %J	2.38 N	

Conrail RI/FS Phase II RI Technical Memorandum Appendix D Revision 1 July 22, 1992

APPENDIX D

GEOLOGIC MONITORING WELL BORING LOGS

D-1

ZF3073.D7838

recycled paper

ecology and environment

freyect Mame Consail site	Well Ho. MWEZBR
Freyect So. 2F3000	Location 54841 Southquite
	Owner U.S. EPA
	Ground Elevation To data
Cate Prepared	Top of Inner Casing Elev. 742.53"
Proposed by	Ortlling Firm Bergerson Caswell
	Seplogist C. Carlson
	Start & Completion Dates 10/19 & 10
LOGY-WELL CONSTRUCTION	Type of Rig Gus Pech
	Method of Drilling Mud retary
AMMALUS	
	WELL DATA
SAND	Boring Diam. 9"
20-	Boring Depth 163.
	Casing Diam. 2"
SILTY SAMO	Screen Diam. 2"
	Screen Interval 158.9'-168.9'
40-	Screen Type 104 stainless wirewound
	Well Type 304 stainless steel
	Well Construction:
	Filter Fack Silica sand 155.5'-1
	Seal #/A
	Grout <u>Enviroplug bentonite</u>
	Lock No. 2344
80-22	
SAID SAID	TEST DATA
100-1	Copth to Water Level:
	While Diviling 12.3"
	After Drilling 14.7- (10, 28/91)
120-120-1	After Completion 12.71 /12/02.7
	Hydraulic Conductivity:
	Test Method
	Pysults
	Comments
SAID SAID	
160-120 (1994)	
SAID & GRAVE	
169-Minister SIME	
	

recycled paper

evologe and environment

Project Number ZF3000

Page 1 of 2

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
1	5 - 6.5	3-5-6	ND	Medium dense medium brown medium sand. Bottom 6 inches medium dense medium brown coarse sand, and small gravel (SP).	HW02BR was drilled from 0'-133' with- out sampling; this
Σ¥	10 - 10.5	9-8-13	ND	Medium dense medium brown coarse sand, trace medium gravel (SP).	part of the log to from Conrail Thase 1 drilling, pilot boring PRO2
28	10.5 - 11	מא	МD	Medium dense medium brown medium sand (SF).	drilled to 131.5".
₹c	11 - 11.5	ND	ND	Medium dense medium brown coarse send (SP-SW).	·
3	15 - 16.5	3-1-1	ND	Very loose brown "ery fine to fine sand (SP-SW).	
1	29 - 21.5	27-31-35	ND	Very dense medium golden brown sand, and medium to large gravel (SW):	
5	25 - 26.5	41-43-40	ND	Extremely dense medium deep golden brown silty sand, and medium to large gravel (SM).	
4	30 - 31.5	41-53-87	ND	Extremely dense light brown very fine silty sand, trace clay, rust areas throughout (SM).	
7 .	35 - 36.5	21-73-90	ND	Extremely dense light brown silty very fine sand, grading into a light brown fine to medium sand at 36 feet (SM).	
8	40 - 41.5	36-72-95	ND	Extremely dense light brown fine to medium send, trace silt (SP).	
٠	45 - 46.5	25-50-60	ND	Extremely dense brown to golden brown fine to medium sand, trace silt (SW).	
10	50 - 51.5	25-37-47	ND	Same as above (SW).	
!1	55 ~ 56.5	28-35-49	ND	Extremely dense medium to dark brown very fine to medium sand, trace silt, trace large sand (SM).	
12	60 ~ 60.5	25-18-80	ND D	Extremely dense brown medium to course sand, trace small gravel, trace milt (SW).	,
13	65 ~ 66.5	41-45-39	ND	Extremely dense medium brown to golden brown coarse sand, trace to little small gravel (SW).	·
14	70 - 71.5	33-49-41	ИD	Same as above (SW).	
15	75 - 76.5	45-37-75	ND	Extremely dense grayish-brown very fine to coarse sand. Some small grayish brown gravel (SW).	
16	80 - 81.5	45-69-47		No recovery, same as above (SW).	
1.7A	95 - 86.5	47-52-70	ИD	Extremely dense gravish brown coarse sand. some medium to large gravel (SF).	u.
1713	86 - 86.5	ND	ND	Extremely dense fine to medium sand, trace small gravel (SP),	

7660:1

opert Name Commonl site	Well No. "WOZBR (Cont.) Fage 2 of 2
eret Sepher 173000	

Sample No.	Sample Depth From - To (ft)	81ow Count	用eco で、 (1用。)	Description	Penerks
16	90 - 71.5	50-75-89	ND.	Same as above (SP).	
19	45 - 36.5	41-71-79	310	Extremely dense brown to golden brown fine to medium sand, trace silt (SW).	
20	190 ~ 101.5	54- 90 -107	RED	Extremely dense brown to solden brown medium to coarse sand, trace small gravel, trace still (SM1.	
21	105 ~ 106.5	19-50-56	800	Same as above (SW).	
22	110 - 111.5	38-48-68	WD.	Extremely dense brown to golden brown fine to medium sand (SW).	
23	!15 ~ 116.5	74-76-67	פא	Extremely dense very coarse sand, and small to medium gravel, trace silt (SW).	
24	120 - 121.5	89-98	97 0	Same as above but with medium to large gravel (SM).	
25	125 - 126.5	67 -90	MO	Extremely dense medium to dark brown fine to coarse sand, trace large gravel (SW).	
26	130 - 131.5	52-60-81	110	Same as above.	PB07 ends here E.O.B. 131.5'
551	135 - 137	12/22/ 46/71	16	Brown coarse sand, some medium sand and coarse to fine gravel, little fine sand, trace salt and cobbles: extremely dense; saturated (SW-GW).	:M028R sampling begine here 10/20/91
5\$2	130 - 140	12/18/ 30/41	10	Light brown coarse sand and coarse to fine gravel, little medium sand, trace fine send: very dense; saturated (SP-GW).	Numerous angular limestone fras- ments in spoon.
\$\$3	143 - 145	12/12/ 24/27	10	Top 6": Dark gray wilty fine wand: lease: saturated (SM) Middle 4": Very dark grayish brown silty clay- to clayey silt: set to saturated (ML-CL). Bottom: Brownish yellow coarse to fine sand sand coarse to fine gravel, trace silt: medium dense: saturated (SM-GM).	
534	140 - 150	9/30/ 37/71	10	Pale brown coarse to fine sand, trace wilt; wery dense; saturated (SW).	
555	153 - 155	8/12/ 29/48	16	Pale brown fine to medium sand, little to trace silt; mery dense; saturated (SP).	
\$56	150 - 160	12/29/ 52/54	24	Same as above with some charge wand: ex- tremely dense: seturated (SW)	
257	163 - 165	12/2 0 21/22	20	Brown coarse to fine sand and coarse to fine gravel, trace silt: dense: saturated FSM-GWs.	
\$30	150 - 170	30/32 40/51	18	Top 12°: same as above with some soft shale layers.	E.O.B. 4164*
	1			Bottom: Competent bluish gray shale.	#.D. ≠ no data

660:1

recycled paper

coolings and construous

Froject Name Conrail site	Well No. MWOSBR
Project No. ZF3000	Location South side Vistula Road
	Owner U.S. EPA
	Ground Elevation No data
Date Prepared	Top of Inner Casing Elev. 734,79
Prepared by	Drilling Firm Bergerson Caswell
	Geologist L. Lueck
	Start & Completion Dates 10/30 & 10/31
	Type of Rig Gus Fech
WELL CONSTRUCTION	Method of Drilling Mud rotery
ANNULUS	WELL DATA
SAND	Boring Diem. 8"
	Boring Depth 145'
SANDY SAT	Casing Diam. 2"
20-112	Screen Diam. 2"
	Screen Interval 126'-136'
	Screen Type 304 stainless wirewound
40-	Well Type 304 stainless steel
	Well Construction:
	Filter Peck Silica sand 123'-136'
	Seal M/A
	Grout Enviroping bentonite
SAND	Lock No 2344
	•
80-18-18-18-18-18-18-18-18-18-18-18-18-18-	
	TEST DATA
	·
	Depth to Water Level:
100-	While Drilling 13.2'
	After Drilling 15.7' (11/03/91)
	After Completion 16.04' (12/02/2)
120-	Mydraulic Conductivity:
SAND & GRAVEL	Test Method
SAND	Results
140-CLAYEY SEJ	Comments
145	
	
•	
	
	

recycled paper

7660:1

2013

ecology and environment 0177

Project Number Contail site
Project Number 273006

Fage 1 of 2

Sample No.	Sample Depth From - To (ft)	Slow Count	Recov.	Description	Remarks
1	5 - 6.5	4-3-5	3	Loose brown medium to coarse send and small to large gravel, angular to well-rounded (gravel very well-rounded), moist (SW).	mmean was drilled from 0'-03' with- out sampling; this
2	10 - 11.5	17-21-19	14	Dense light brown medium to coarse sand and small gravel, subrounded to well-rounded, moist (SP-SW).	part of the log is from Conrail These 1 drilling, modes to 36.5° and MMOSE
3	15 - 16.5	19-35-55	16	Very dease brown sandy silt, some small to medium gravel, trace clay, moist (SM-ML).	to 01.5'.
•	20 - 21.5	44-59-83	18	Very dense brown sandy silt, some small to medium gravel, vet (SR-ML).	
•	25 - 26.5	63-50/2"	•	Very dense fine to medium sand, trace small gravel, subangular to subrounded, saturated (SW).	;
4	30 - 31.5	47-50/5*	•	Very donse tan siltyery fine sand, saturated (SM).	
7	35 - 36.5	40-50/5"	•	Мо госочогу.	19465 ands here 5.0.8. 9 36.5'
•1	35 - 36.5	37-46-52	4	Extremely dense brown fine to medium sand, subangular to subrounded, wet (SP).	rmeso sampling begins here.
•2	40 - 41.5	32-55-50	6	Extremely dense grayish brown medium send, subangular to subrounded, saturated (SP).	Solid stem ausered 0'-6', blind drilled to 25'.
03	45 - 46.5	100/5"	•	No recevery (refusal).	then mud rotary drilled to \$1.5°.
04	50 - 51.5	104-50/3"	•	No recovery (refusal).	
95	55 - 56.5	90-106	•	No recovery (refusal).	
•6	40 - 41.5	85-130- 200	•	No recovery (refusal).	
٠,	65 - 66.5	140-60/3*	•	No recevery (refusal).	
.0	70 - 71.5	42-73	10	Extremely dense grayish brown fine to medium sand, subangular to subrounded, saturated (SP).	
29	75 - 76.5	100/3-	•	No recevery.	
10	80 - 81.5	82-50/3*	•	Extremely dense grayish brown medium to coarse sand, subanquiar to well-rounded, saturated (SP).	18108D ends here E.O.B. & 81.5'.
\$\$1	83 - 85	27/38/ 40/41	13	Medium brown fine send, trace clay, grading down to fine to medium send: extremely dense; saturated (SP).	MMOSER sampling begins here 10/30/91
552	88 - 90	25/26/ 27/30	17	Brown fine to medium sand, trace fine to medium gravel; very dense; saturated (SF).	

7660:1

roject Name | Conrail site | Boring Well No. | MWOSBR (Cont.) | Fage 2 of 2 | Troject Number | Z73000 |

		1			
Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Pemark«
553	28 - 95	18/17 16/21	14	Brown fine to coarse sand: dense: saturated (SP).	·
554	85 - 100	17/34/ 54/53	19	Brown fine to medium sand, trace coarse sand; extremely dense; saturated (SP).	
ss5	103 - 105	43/56/ 61/61	19	Dark brown fine to coarse sand, trace fine to medium gravel; extremely dense; saturated (SW).	
S \$ 6	108 - 110	57/64 84/88	17	Brown fine to coarse sand, little fine to medium gravel, grading down to fine to coarse sand, some fine to medium gravel; extremely dense; saturated (SW).	Bottom 3" of sample had a clayey rind but none inside.
S S 7	113 - 115	14/14/	7	Medium brown fine to coarse sand, little fine to coarse gravel, trace clay, a little loose gravel on top; extremely dense (SW).	Very rough dril- ling and fram- ments of large gravel and small cobbles in spech.
558	118 - 120	20/21/ 57/51	19	Brown fine to coarse sand, little fine to medium gravel; extremely dense; saturated (SW).	·
559	123 - 125	23/54/ 63/61	15	Brown coarse sand and fine to coarse gravel, grading down to fine to medium sand, trace fine gravel; extremely dense; saturated (SW).	
5510	128 - 130	16/39/ 42/73	13	Medium brown fine to coarse sand and fine to coarse gravel, trace silt; extremely dense; saturated (SW).	
5511	133 - 135	14/28/ 41/50	15	Grayish brown medium to coarse sand, trace gravel, trace silt, grading down to yellowish brown gravel, little silt: ex- tremely dense: saturated (SW-GW).	A few smell graveriary lumps in out- tings below 125 drilling sort of tough anyway. Hit clay around 136 according to driller.
SS12	138 - 140	15/50/ 113- refusal	0; 9	Dark gray clayey silt; extremely dense; moist (HL).	Sampler empty after first LAT attempt, traces of clay on outside; blows not counted on second attempt.
5513	143 - 145	17/18/ 28/49	16	Dark gray clayey silt and silty clay: extremely dense: moist (ML-CH).	E.O.B. @ 115°; backfilled with sand to 136° to set screen.
					٢,

.pject Name Contail site Well No. MW275	 				_
		Conrail site	Well No.	:WZTS	

Sample 30.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Reporks
\$51	3 - 5	5/7/5/7	22	Top 6": Derk brown sandy smil Bottom: Yellowish brown fine to medium sand, trace coarse sand and silt; medium dense; Boist (SP).	
552	8 - 10	3/4/3/4	14	Top 6": Same as above (SP). Bettom: Dark brown coarse to fine sand. little silt, trace fine gravel: loose; saturated (SW).	
553	13 - 15	12/17/	14	Same as above except brown, with little coarse to fine gravel: medium demse: saturated (SW).	
554	19 - 20	16/8/ 11/20	16	Tellowish brown fine to medium sand. little silt, little course to fine gravel concentrated in 1"-3" rones mixed with sand; medium dense; saturated (SW).	5.9.R. 0 78°
	1, :			•	
-					
		; ;		· · · · · · · · · · · · · · · · · · ·	
		 -			· :
		1			
	realization of the state of the				
		:	٠		

7660:1

roject Name Conrail site	Well No. MW27s
roject No. ZF3000	Location S. of ponds, E. end of W. pond
	OWNER U.S. EPA
	Ground Elevation No data
ete Prepared	Top of Inner Casing Elev. 751.87'
repared by	Drilling Firm Bergerson Caswell
	Geologist C. Carlson
	Start & Completion Date 10/05/91
	Type of RigCME75
	Method of Drilling Hollow stem auger
WELL CONSTRUCTION	
ANNULUS	WELL DATA
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	Boring Diam. 8"
	Boring Depth 20'
	Casing Diam. 2"
	Screen Diam. 2"
	Screen Interval 8'-18'
	Screen Type 304 stainless wirewound
	Well Type 304 stainless steel
	Well Construction:
6 6	Filter Pack Silica sand 6'-18'
	Seel bentonite chips 5.5'-6'
+∰₩≡₩₩	Grout Enviroplug bentonite
- SAID SAID	Lock No. 2344
10-10-10-10-10-10-10-10-10-10-10-10-10-1	•
	TEST DATA
	Bankh ha Mahan Caral
	Cepth to Water Level:
- :: =::1	While Drilling 9. After Drilling 11.2 (10/29/91)
15-80:	After Completion 10.73' (12/02/91)
	10.73 (12/02/71)
	Hydraulic Conductivity:
	Test Method
	Results
	Comments
	COMMEDIES

7660:1

Project Base Conrail site	Well No. THEFT
Project No. 173000	Location 5' south of H278
	Owner U.S. EPA
	Ground Elevation No data
Date Propered	Top of Inner Casing Elev.
Proposed by	Drilling Firm Borgerson Caswell
	Geologist A. Hackler
	Start & Completion Dates 10/14 & 1
	Type of Rig CHE75/Gus Fech
WELL CONSTRUCTION	Maked of Spilling Mallow shapes
	Method of Drilling Mollow stem au sampling/mod rotary for well const
Answer or	WELL SATA
	Series Sies 4"
	Boring Diam. 8" Boring Dopth 56'
	Cosing Diem. 2"
	Screen Diam. 2"
	Screen Interval 43.1'-53.1'
	Screen Type 304 stainless virous
24D	
	Well Type 384 stainless steel Well Construction:
	Filter Peck Silica sand 10.0'- Seni W/A
	GroutEnvironity beatonite
	Lock Bo. 2344
The second secon	TEST SATA
	-
COLUMB.	Depth to Mater Level:
	While Drilling 10.8"
	After Drilling 11.6' (10/29/9
40-111表 夏[1]	After Completion 11.52' (12/02
	Hydraulic Conductivity:
	Test Hethod
	
	
50-30 5400	Comments
	
استهمانا شاه	
	

recycled pape

7660:1

evoluty and reviewments

Project	Hame	Conreil site	Well N	lo.	16V27I
Project	Humber	273000			

Sample No.	Sample Depth From - To (ft)	Slow Count	Recov.	Description	Pemarke
\$51	3 - 5	5/7/5/7	22	Top 6": Dark brown sandy soil. Bottom: Yellowish brown fine to medium sand, trace coarse sand and silt: medium dense; moist (SP).	HW27I was drilled from 0'-23' with- out sampling; this part of the log is from HW275.
SS2	8 - 10	3/4/3/4	14	Top 6": Same as above (SP). Bottom: Dark brown coarse to fine sand, little silt, trace fine gravel; loose; saturated (SW).	
553	13 - 15	12/17/ 15/18	14	Same as above except brown with little coarge to fine gravel; medium dense; saturated (SW).	
554	16 - 20	16/8/ 11/20	16	Yellowish brown fine to medium sand, little silt, little coarse to fine gravel concentrated in 1"-3" zones mixed with sand; medium dense; saturated (5W).	M4275 ends here E.O.B. 4 20'
351	23 - 25	11/19/	22	Brown medium sand with some fine and coarse sand; medium dense; saturated (SW).	MW271 campling begins here 11/14/91
5\$2	28 - 30	10/12/ 16/20	22	Top 12": Same as above (SW). Bottom: Yellowish brown medium to coarse gravel, little sand, trace silt; dense; saturated (GW).	
553	33 - 35	25/30/ 30/35	2	Same as above except possibly some cobbles as well; very dense (GW).	targe piece of basalt in speem: difficult dril- ling, like cobbles
S S 4	38 - 40	10/14/ 25/28	21	Top 12": Same as above (GW). Bottom: Dark grayish brown silt, trace clay. sand. fine gravel: dense: low plasticity; moist (ML).	
535	43 - 45	12/30/ 34/50	22	Top 9": Same as above (ML). Bottom: Gray fine sand, little fine gravel; extremely dense: wet (SP).	Removed 1' of heave before sampling.
S56	48 - 50	25/75/90/ refusal after 50		Same as above except fine to medium sand; extremely dense; saturated (SW)	
557	53 - 55	3/3/8/30	24	Grayish brown medium to coarse sand: 1" thick silt stringer in middle: dense: saturated (SP). Note: This boring was drilled twice with hollow stem auger on 10/14/91: sampling and soil description was done during the first of these. Severe sand heave in the auger prevented well construction in either, they were abandoned and grouted to ground surface. A third boring was completed with mud rotary drilling on 10/17/91, and the monitoring well was constructed in this hole about 5° south of MM27S.	

reject Mase Conroll site	Well No. MY285
reject Bo. 273000	Location East of ponds along access rea
	Owner W.S. EPA
	Ground Elevation No data
oto Propared	Top of Inner Casing Elev. 758.83'
repared by	Drilling Firm Bergerson Caswell
	Geologist C. Carlson
	Start & Completion Date10/05/91
	Type of Rig CME75
	Hethod of Drilling Mollow stem suger
WELL CONSTRUCTION	
AMERICA SE	WELL BATA
	Boring Diam. 8"
	Doring Depth 28.
	Casing Diam. 2°
	Screen Diam. 2"
	Screen Interval 8.5'-18.5'
	Screen Type 304 stainless wirewound
	Well Type 304 stainless steel
S-A-T-	Well Construction:
	Filter Fack Silica sand 4.5'-18.5'
	Seel Demtonite chips 4.0'-5.5'
	Growt <u>Enviroplus</u> bentonite
	Lock 90. 2344
SAO SAO	
10-1-1	
	TEST BATA
	Depth to Water Level:
	Maile Drilling 2.8"
	After Drilling 12.2' (18/29/91)
18-4::::::::::::::::::::::::::::::::::::	After Completion 11.34" (12/02/01)
	Hydraulic Conductivity:
	Test Nethed
	Results
	Comments
20	
	·

recycled page

7660:1

reduce and recommend

		Conrail site	Well No.	<u>194285</u>
Project	Number	273000		

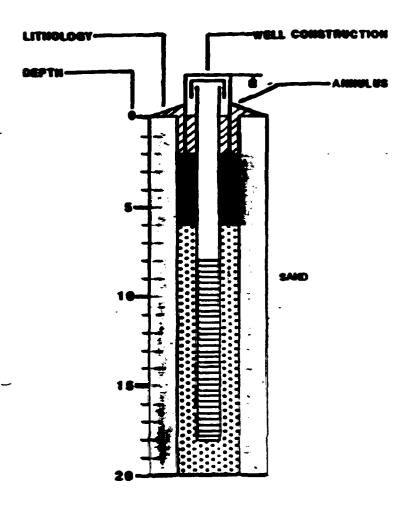
Sample No.	Sample Depth From - To (ft)	Elow Blow	Recov.	Description	Remarks
551	3 - 5	4/5/4/4	14	Dark yellowish brown fine to medium send, little coarse send, trace silt and coarse to fine gravel; loome: moist (SW).	
552	8 - 10	5/5/7/7	13	Brown medium to coarse sand, little fine sand and fine gravel, trace silt: medium dense: saturated at shoe, moist above (SW).	
553	13 - 15	13/21/ 17/11	6	Same as above except little coerse to fine gravel; medium dense; saturated (SW).	
534	18 - 20	7/6/ 10/9	6	Brown coarse sand and fine gravel, trace fine to medium sand and coarse gravel, trace silt; medium dense; saturated (SW-GW).	Cobble in apoon.
				E.O.B. @ 20' (drilled to 19')	
		·			

Well No. MWZ81 Project Bene Conrail site Location 4' west of MIZES Project No. 273000 OWNET __ U.S. EPA Ground Elevation ___ Top of Isser Casing tlev. 750.91' Date Propered Propored by __ Drilling Firm Borgerson Caswell Goologist R. Hackler Start & Completion Date 19/18/91 Type of Rig CME75 LITHOLOGY-WELL CONSTRUCTION Method of Drilling Bollow stem auger WELL BATA Bering Diam. Boring Depth __ 55. Casing Dies. ___2" Screen Diam. 2" Screen Interval 43'-53' Screen Type 304 stainless wirewound Well Type 304 stainless steel Well Construction: Filter Pock Silice send 41'-53' Seel ___B/A Growt __Enviroping beatomite Lock No. __2344__ TEST BATA Depth to Water Level: While Drilling 7.8" After Drilling 11.6' (18/29/91) After Completion 11.69' (12/02/91) Mydraulic Conductivity: Test Nethed Results __ Comments 7660:1 558047

recycled paper

tample and targenments

Project Name Conrail site
Project Number 2F3006


Well No. . HW281

Sample No.	Sample Depth from ~ To (ft)	Blow Count	Recov.	Description	Remarks
551	3 - 5	4/5/4/4	14	Dark yellowish brown fine to medium send, little coarse sand, trace silt and coarse to fine gravel: loose: moist (SW).	MW281 was drilled from 0'-23' with- out sampling; this
552	8 - 10	5/3/7/7	13	Brown medium to coarse sand: little fine sand and fine gravel, trace silt; medium dense; saturated at shoe, moist above (SW).	part of the los is from HW285.
553	13 - 15	13/21/ 17/11	6	Same as above except little coarse to fine gravel; medium dense; saturated (SW).	
954	18 - 20	7/6/	6 -	Brown coarse sand and fine gravel, trace fine to medium sand and coarse gravel, trace silt; medium dense; saturated (SW-GW).	
551	23 - 25	7/13/ 15/17	12	Brown medium to very coarse sand, some fine gravel, trace fine sand and silt: dense; saturated (SW).	MM281 campling begins here 10/18/91.
392	20 - 30	7/15/ 20/22	12	Brown gravel, some coarse to mery coarse sand, trace fine sand, silt; dense: saturated (GM).	
583	33 - 35	12/ refusel		Same as above (GW).	Tough drilling at 32'. Drilling change at 37'.
554	38 - 40	10/34/ 43/45	12	Dark brown and dark grayish brown silt: little very coarse sand; extremely dense: low plasticity; wet (ML).	
-85	43 - 45	5/20/ 20/30	15	Dark gray silt, little very coarse sand; extremely dense; low plasticity; wet (NL).	Drilling change
556	48 - 50	5/28/ 35/45	24	Top 18": Grayish brown fine to coarse sand, trace silt; saturated (SW). Bottom: Yellowish brown very fine to fine sand; very dense; wet (SP).	at 47'.
557	53 - 55	6/12/ 15/18	24	Grayish brown medium to coarge sand, little very coarse sand, little fine sand; gray silt stringer at 54'; dense; saturated (SW).	₽.O.B. @ 55°
_				·	
•					

7660:1

grow of 🚯

9
_

Well Bo.	197295
Location	South end of eastern pond
-	V.S. EPA
Ground El	evation
Top of In	mer Casing Clev. 751.77
Drilling	Firm Bergerson Caswell
Geelogist	C. Carlson
Start & C	completion Date 10/05/91
Type of B	ig <u>cne75</u>
Nethod of	Drilling Mollow stem auger

well days

Boring Diam.	1-
Boring Dapth	20-
Casing Diam.	2-
Screen Diam.	5-
Screen Interv	1 1-10'
Screen Type _	baseveriv scelaiste 400
Well Type 30	f stainless steel
Well Comstruc	tien:
Filter Pack	Silica sand 5'-18'
Seel Best	omite pellets 5.5'-6'
Grout Cav	iroplug bentonste
Lock So.	2344

TEST DATA
Depth to Water Level:
While Orilling9.5'
After Drilling 10.3' (11/01/91)
After Completion 10.54' (12/02/91)
Hydraulic Conductivity:
Test Hethod
Results
Comments

7660:1

ender and resinguism

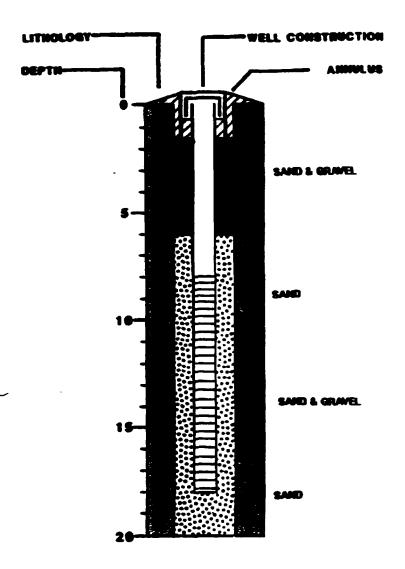
		W-11 W- 1849An
Project	Name Conrail site	Well No. MW295
Project	Number 273000	

ample No.	Sample Depth From - To (ft)	Blow Count	Recov. (in.)	Description	Remarks
551	3 - 5	3/4/4/5	12	Yellowish brown fine to medium send, trace coarse sand; loose; moist (SP).	
552	8 - 10	3/6/5/5	14.5	Brown coarse to fine sand. little fine gravel, trace silt and coarse gravel: loose; wet (saturated at drive shoe) (SW).	
553	13 - 15	3/8/10/10	12	Same as above (SW).	
554	18 - 20 ·	3/10/ 17/20	•	Same as above (SW).	E.O.B. # 20'
	·				
		·			
			-		·
			•		

ject Memo Conrell site	Well No. 199291
)ject No. <u>273000</u>	Location South and of eastern pond
	Owner U.S. EPA
	Ground Elevation 30 data
e Propered	Top of Immer Casing Elev752.37
pered by	Drilling Firm Borgerson Caswell
	Geologist C. Carlson
	Start & Completion Date 10/89/91
	Type of Rig CHE75
WELL CONSTS	Method of Drilling Mollow stem auger
	
	WELL BATA
	Boring Diam 8"
	Boring Depth 50°
	Casing Diam. 2°
	Screen Diam2"
	Screen Interval 35.3'-45.3'
	Screen Type 364 stainless virevound
	Well Type 304 stainless steel
	Well Construction:
SAID .	Filter Pack Silica sand 32.5'-47'
を持ち、 1997年 -	Seel S/A
20	Grout Enviroping bentonite
	Lock 80. 2344
30-	TEST BATA
	Depth to Water Level:
	while Drilling 10.0'
CANEL	After Brilling 11.2' (11/01/91)
	After Completion 11.17 (12/02/01
40	Mydraulic Conductivity:
	Test Hethod
	Rosults
47	Comments
•	

recycled peper

7660:1


coulons and environment

	Name Consail site	Well No. MW29I
Project	Number ZF3000	

Sample No.	Sample Depth From - To (ft)	Slow Count	Recov.	Description	Remarks
551	3 - 5	3/4/4/5	12	Yellowish brown fine to medium sand, trace coarse sand; loose; moist (SP).	mwzer was drilled from 0'-23' with-
552	8 ~ 10	3/6/5/5	N.D.	Brown coarse to fine sand, little fine gravel, trace silt and coarse gravel; loose; wet (saturated at drive shoe) (SW).	out sampling; this part of the los is from HM295.
553	13 - 15	3/8/10/10	12	Same as above (SW).	
534	18 - 20	3/10/ 17/20	•	Same as above (SW).	MW295 ends here. E.O.B. # 20'
551	23 - 25	8/11/ 2/13	24	Yellowish brown medium to coarse sand, little fine sand, trace silt and fine gravel; medium dense; saturated (SW).	
SS2	28 - 30	3/3/8/20	22	Same as above except brown (SW).	
5\$3	33 - 35	3/3/3/4	16	Top half: Same as above (SW). Bottom half: Brown coarse to fine gravel. little fine sand, trace fine to medium sand: loose: saturated (GW).	Difficult drilling
554	30 - 40	45/55/ 60/60 -	20	Top 5": Brown coarse to fine sand, trace fine gravel, trace silt: very dense: saturated (SW). Middle 3": Brown clayey silt, trace fine sand; very dense; moist to dry (ML). Bottom: Brown coarse to fine sand, little fine gravel, trace silt, clay, and coarse gravel: dense; saturated (SW).	at about 36'.
\$ \$ \$ \$ \$	43 - 45	15/13 20/31	14	Brown silty fine sand, trace medium sand and clay; dense; wet to saturated (SM).	·
556	48 - 50	20/32/ 40/53	24	Same as above except wet to moist; grading downward to fine sandy silt (SM-ML).	E.O.B. 9 50'
		M.D. = no data			
	<u>'</u>			·	

Project Name Comrail site
Project No. 273000

Cate Propered
Propered by

Well No
Location West end of classification yard
between tracks 39 and 40
OWNER 7.5. ETA
Ground Elevation No data
Top of Inner Casing Elev. 748.13'
Drilling Firm Borgerson Casvell
GeelogistC. Carlson
Start & Completion Date 10/06/91
Type of Rig CHE75
Method of Drilling Hollow stem auger

WELL DATE

Boring Diam.	<u> </u>
Boring Dopth	20.
Casing Diam.	5.
Screen Diem.	2-
Screen Interve	11 8'-18'
Screen Type _	94 stainless virewound
Well Type 300	stainless steel
Well Construct	ion:
Filter Pack	Silica sand <'-18'
SeelBeet	tomite pellets 5.5'-4'
Srout Env	iroplug bentonite
Lock #0.	2344

TEST DATA

Depth to Water Level:

While Drilling	9.4"
After Drilling	7.4" (10/31/91)
After Completion	0.43* (12/02/91)
Mydraulic Conducti	vity:
Test Method	
Results	

7660:1

Project	_	Conrail site	We11	No	MW305
Project	Number _	ZF3000			

Sample No.	Sample Depth From - To (ft)	8low Count	Recov.	Description	Pemarks
				Drilled to 20' for well construction without sampling (except one split spoon for grain size analysis at 11'-13').	
				See log MW30I for stratigraphy at this location.	€.O.B. 4 20°.
	·				
				·	
					,
				,	
			,		
				·	
					·
					·
					.:

Fre year Feme	Contail site	_
Fregect 30.	273000	_
Data Propers		
Date Propered	·	_
frepared by		

LITHOLOGY	WELL CORETRY
	SAND & GRAVEL
10~	SAID
-	SAND & GRAVEL
20-	
-	SAND
30~	SAND & GRAVEL
-	ear ear
40-1118	
-	SAND
56-	

Well Mo.	39/301
Location	West end of classification yard
between	tracks 39 and 40
Owner	U.S. EPA
Sround El	evation
Top of In	not Casing Elev. 748.18'
Drilling	Fith Bergerson Caswell
Geologist	C. Carlson
Start & C	ompletion Date10/86/91
Type of R	ig CHE75
Hethed of	Drilling Hollow stem suger

WELL BATA

Boring Diam.	9.
Boring Depth	55*
Cosing Diam.	_ 2 -
Screen Diam.	2-
Screen Interva	1 42.7'-52.7'
	04 staimless wirewound
Well Type 304	stainless *teel
Well Construct	ion:
filter Pack	Silica sand 38'-55'
Seel W/A	
Grout Envi	roplug bestonite
Lock Bo.	2344

TEST DATA

Walle	Drilling	10.5'
After	Drilling	2.17 (10/31/91)
After	Completion	2.35" (12/02/91)
waten l	ic Conductiv	-i te-
-		
Commo	wts	
		

558847

recycled pape

7660:L

realize and recircuments

Project	Name Conrail site	Well No.	MM301
Project	Number ZF3000		

Sample No.	Sample Depth from - To (ft)	Blow Count	Recov.	Description	Remarks
351	3 - 5	6/4/3/3	6	Yellowish brown clayey sand and gravel, little silt; loose; moist.	Appears to be fill material.
552	8 - 10	12/8/ 10/18	10	Brown coarse sand, little fine gravel and clay, trace fine to medium sand and coarse gravel: medium dense: wet (SP).	
533	13 - 15	27/10/ 7/8	14	Yellowish brown coarse sand and fine gravel, some silt and clay, trace fine to medium sand and coarse gravel: medium dense: saturated (SM-GM).	
534	18 - 20	3/5/ 27/50	20	Brown medium to coarse sand, some coarse to fine gravel, little fine sand, trace silt, trace small cobbles; very dense; saturated (SW).	
385	23 - 25	13/15/ 8/12	22	Same as above except medium dense (SW).	
356	28 - 30	9/12/ 19/29	20	Top 3": Same as above (SW). Middle 9": Pele brown silty clay to clayey silt, trace fine sand, trace coarse to fine gravel; very dense; moist (ML-CL). Bottom: Brown fine to medium sand, trace coarse sand, trace silt; dense; saturated (SW).	
S 5 7	33 - 35	1/2/ 10/23	10	Brown coarse sand and fine gravel, trace silt and clay, trace fine sand and coarse gravel; dense; saturated (SP-GP).	
122	38 - 40	14/40 42/60	10	Pale brown clayey silt to sandy silt, trace coarse to fine sand and fine gravel; extremely dense; moist to wet (ML-CL).	Drilling change
5\$9	43 - 45	25/125/ 175/200	18	Pale brown fine sand, little coerse sand and coarse to fine gravel at top, little silt; extremely dense; saturated (SP).	at 42".
5510	48 - 50	4/6/ 40/40	24	Brown silty medium send, little coerse sand, little fine sand, trace fine gravel; "ery dense: saturated (SP).	
5511	53 ~ 55	18/34/ 42/40	18	Pale brown fine to medium sand, little silt, trace coarse sand and fine gravel; very dense; saturated (SP).	.E.ola. e 357
			:		

	··
Project Heme Conreal site	Well No. MYSEL
freject No. 2F3000	Location Between track groups 3 and
	100' west of bend
	Owner U.S. EFA
Date Prepared	Ground Elevation Ho data
Frepared by	Top of Inner Casing Elev. 747.04'
	Drilling Firm Bergerson Caswell
	Geologist R. Mackler
	Start & Completion Date 18/21/91
ACCUPATION AND A CONSTRUCTION	type of Rig
WELL CONSTRUCTION	
	Method of Drilling Hollow stem aug
AMMALUS	
PLL PALL	WELL BATA
	Boring Diam. 5"
	Boring Depth 57'
SAID SAID	Casing Diam.
10 -	Screen Diam. 2"
	Screen Interval 45'-55'
	Screen Type 104 stainless wirewound
1// 1//	Well Type 304 stainless steel
	Well Construction:
20-// C.W	Filter Peck Silica sand 43'-57'
	Seel 9/A
	Grout Enviroplus beatomits
	Lock Bo. 2344
30-	
	TEST BATA
-	Copth to Mater Level:
	While Drilling 8'
	After Orilling 7.5' (10/30/91)
SAID	After Completion 7.74' (12/82/91)
≋ ≅	Hydraulic Conductivity:
	Test Hethod
	Results
50- 18	Comments
第三 分	
	
	
31 	

· ·	Conrail site	Well No.	HW361
Project Number	ZF 3000		

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
551	3 - 5	7/8/7/10	20	Top 12": Black soil & bellest. Bottom: Grayish brown fine to coarse send, little very coarse sand; medium dense; moist (SW).	
S S 2	8 - 10	7/7/8/17	16	Grayish brown medium to very coarse sand, some gravel; medium dense; saturated (SW).	
S\$3	13 - 15	3/3/4/9	22	Top 6": Same as above (SW). Bottom: Dark gray clay, little silt; medium dense; high plasticity; wet (CL).	
554	18 - 20	3/3/4/6	18	Same as above (CL).	
ss5	23 - 25	5/5/5/6	22	Same as above (CL).	
536	28 - 30	10/12/ 10/11	24	Dark gray very fine sand, some silt, some very coarse sand and gravel, little clay: medium dense: saturated to wet (SM).	
557	33 - 35	2/2/3/5	22	Same as above (SM).	
558	36 - 40	2/3/3/3	17	Same as above (SM).	
\$59	43 - 45	12/2 8/ 40/50	24	Top 6": Same as above (SM). Bottom: Brown fine to medium sand, little coarse to very coarse sand; extremely dense; saturated (SW).	
5510	48 - 50	10/22/ 30/40	24	Same as above except no coarse to very coarse sand and little very fine sand (SP).	
5\$11	53 - 55	23/60/ 60/60	24	Same as above except with 2" gray clay stringer at 54.5' (SP).	E.O.B. @ 57*
1					
	·				
			1	•	

Freyect Heme Conrail site	Well No
Preject No. 273000	Location Near LSA24
	Owner C.S. EPA
	Ground Elevation No data
Date Prepared	Top of Inner Casing Eler. 748.50"
Propored by	Drilling Firm Rerectson Caswell
	Seologist R. Mackler
	Start & Completion Date 19/19/91
DEY	Type of Rig
	Method of Drilline Mollov «tem aug
A MANUAL US	WELL DAYA
7	
	Borine Diam. 8"
SMD	Boting Depth 10.5*
5 2 200	Cosing Diam. 2"
	Screen Interval 20'-30'
	Screen Type 304 stainless wirewound
	Well Type 304 stainless steel
	Well Construction:
10- CLAVEY SEJ	filter Feck Silica send 18'-38'
-101	Seel 3/A
	Growt Enviroplus tentonite
	Lock No. 2344
15	****
	TEST BATA
	Copth to Woter Level:
20-1	while Orilline
	After Drilling 7.3' (11/01/91)
	After Completion 7.33' (12/02/91)
	Rydraulic Conductivity:
25-	Test Hethod
	Posults
	Comments
	· · · · · · · · · · · · · · · · · · ·
3.	**************************************
30.5	
30.5	
30.5	
30.5	

recycled page

crudage and environment

Project Mame _	Contail site	Well No. MW35S
Project Mumber	273000	

ample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remerk=
551	3 - 5	4/9/11/13	18	Pale brown fine to medium sand, some very fine sand; medium dense; moist (SW).	
s s2	8 - 10	9/6/5/8	22	Top 13": Same as above except saturated (SW). Sottom: Yellowish brown clayey silt; wet (ML).	
553	13 - 15	3/3/2/4	24	Brown fine to medium sand, little coarse sand, trace gravel; loose; saturated (17).	
\$34	18 - 20	4/4/6/9	24	Top 6": Same as above (SW). Bottom: Tellowish brown coarse to ver coarse sand, some gravel and fine to r. :m sand, trace silt; medium dense; satura : (SW).	
s s5	23 - 25	9/13/ 17/19	24	Top 18": Same as above (SWI. Bottom: Yellowish brown fine to medium sand; dense; saturated (SPI.	
536	28 - 30	6/10/ 22/48	24	Brown coarse to very coarse sand, some gravel, some very fine to medium sand, trace silt: very dense: saturated (SW).	E.O.B. @ 30.5*
				;	
		·			
				·	
				·	
				•	
				·	
	·				
					• •

· \$

1.11

Well No. 19/34I Project Mame Contail site Location North of car shop near LSA15 Freject No. 273000 Owner U.S. EPA Ground Elevation No data Top of Inner Casing Elev. 744.33' Date Prepared Drilling Firm Bergerson Caswell Propored by __ Geologist 2. Mackler Start & Completion Date 10/19/91 Type of Rig CME75 WELL CONSTRUCTION Method of Drilling __ Hollow Stem auger LITHOLOGY ASSESSED ME WELL BATA Boring Diam. __ 8" Boring Depth 50.5 Cosing Diam. 2" Screen Diam. 2" Screen Type 384 stainless wirewound Well Type 104 stainless steel Well Construction: Filter Fack Silica sand 38'-50' Seel F/A Growt Enviroplus bentonite Lock No. 2344 TEST DATA SAND & GRAVEL Depth to Weter Level: While Drilling ___0.5' After Drilling 0.5' (10/31/91) After Completion 8.59' (12/02/91) Mydroulic Conductivity: Test Nethod Results Comments

recycled paper

7460:1

coder, and resiments

Project	Name Conrail site	Well No. HW341
Project	Number 273000	•

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
551	3 - 5	4/3/3/3	18	Dark yellowish brown medium to fine sand: loose: moist (SP).	·
5 52	8 - 10	5/6/4/21	11	Same as above except coarsening downward (a rock in drive shoe): saturated (SW).	Difficult drilling at 10°.
\$53	13 - 15	11/5/ 11/21	16	Brown medium to very coarse sand, some fine gravel, little fine sand; dense; saturated (SW).	
534	18 - 20	6/6/10/12	24	Brown medium to fine sand, some gravel, little very coarse sand; medium dense; saturated (SW).	
555	23 - 25	7/7/7/10	22	Top 12": Same as above (SW). Bottom: Brown medium to very coarse sand and gravel: medium dense; saturated (SP-GP).	
556	28 - 30	21/80 for 3"	12	Same as above (SP-GP).	Difficult drilling et 30°.
557	33 - 35	21/70 - refuse	12	Same as above (SP-GP).	
558	38 - 40	19/27/ 125- refuse	15	Same as above (SP-GP).	
559	43 - 45	12/10/ 10/20	24	Brown medium to very fine sand; dense; saturated (SW).	
5\$10	48 - 50	7/12/ 18/20	20	Top 13": Same as above (SW). Bottom: Brown medium to fine sand and gravel, trace silt; dense; saturated (SP~GP).	€.0.8. € 50.5
					* * * : *

Project Name Contail site
Project No. 2F3000

Date Propered
Propered by

Well No. HR33I
Location Near LSA30 between tracks 63 (61
Owner U.S. EPA
Ground Elevation No data
Top of Inner Casing Elev. 745.31'
Drilling Firm Nergerson Caswell
Geologist R. Mackler
Start & Completion Date 10/16/91
Type of Rig CHE 75
Hethod of Brilling Nollow Stem auger

DEPTH AMBULUS SAME SAM

WILL MATA

Boring Diam.

Boring Dopth 17'

Casing Diam. 2'

Screen Diam. 2'

Screen Interval 35'-45'

Screen Type 304 stainless virewound

Well Type 304 stainless virewound

Well Construction:

filter Pack Silica sand 32'-47'

Seel H/A

Grout Enviroplus bentonite

Lock No. 2344

TEST BATA

Dopth to Water Level:
While Brilling 3'
After Drilling 7.6' (10/30/91)
After Completion 7.16' (12/02/91)

Bydroulic Conductivity:
Tost Nothed
Results
Comments

7660:1

Project	Hame	Conrail site	Well N	۹o.	'W331	
Project	Humber	ZF3000		_		

Sample No.	Sample Depth from - To (ft)	Blow Count	Recov.	Description	Remerks
SSI	3 - 5	7/4/4/4	0	No recovery: possibly still in railroad ballast.	
5\$2	8 - 10	9/9/ 23/25	•	Yellowish brown fine to coarse gravel, little sand, little silt; dense; saturated (GW).	
553	- 13 - 15	8/8/8/10	20	Tellowish brown very coarse sand, little gravel; medium dense; saturated (SP).	
554	18 - 20	0/15/ 15/24	20	Same as above except some gravel and little fine to medium sand (SW).	1' blowup
S\$5	23 - 25	10/10/ 12/15	12	Same as above (SW).	
		12/13		·	Difficult drilling at 27'. Driller thinks there was silt from 25'-28'.
536	28 - 30	4/18/ 35/32	24	Same as above except for 3" silt stringer at 29' (5W).	
557	33 - 35	10/18 22/28	24	Same as above (SW).	
558	38 - 40	20/30/ 30/40	12	Same as above (SW).	•
559	43 - 45	14/15/ 17/22	10	Same as above (SW).	E.O.B. # 47'
			:	,	•
·					
				·	
	·				

Project Bene Contail site	Well No. 197335
Project No. 273000	Location 5' west of MM331
realest me. ersees	Owner U.S. EPA
	Ground Elevation No data
Date Propered	Top of Inner Casing Elev. 745.48'
Propered by	Drilling Firm Bergerson Caswell
	Goologist R. Hackler
	Start & Completion Date 10/16/91
DOY	Type of Rig CHE75
LOSY WELL CONSTRUCTION	
f	Method of Drilling Hollow stem auge
AMMALUS	
1.24 13.0	WELL BATA
1: 12 22:1	 -
	Boring Diam. 8"
	Boring Depth 27
	Casing Diam. 2"
5-7-1, 200 (1-1)	Screen Diam. 2°
COME	Screen Interval 16.5'-26.5'
	Screen Type 304 stainless wirevound
↓• * TEL • • 1	Well Type 304 stainless steel
	Well Construction:
	Filter Pack Silica sand 14:-27:
	Seel E/A
	Growt - Enviroping bontonite
	Lock #e2344
	TEST BAYA
	Depth to Meter Level:
	While Orilling 7.0
	After Brilling 7.3' (10/30/91)
SAID SAID	After Completion 5.05' (12/02/91)
20-	
	Rydraulic Conductivity:
	Test Hethod
	Results
	Comments
28-28-3	
27 delitation delitable	
•	

ecycled paper

terptic and tenjenomen

Froject Name Conrail site Well No. NW33S Project Number ZF3000	
--	-------------

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remark<
				Drilled to 23' without sampling; see log of MW33I for stratigraphy at this location.	
551	23 - 25	9/12/9/12	14	Yellowish brown very coarse sand and gravel, little medium to fine sand, trace silt; medium dense: saturated (SP-GP).	HW33S <ambling 10="" 16="" 41.<="" begins="" here="" th=""></ambling>
				·	Some blowup in auger.
552	25 - 27	8/15/ 18/30	22	Top 12": Same as above (SP-GP). Bottom: Brown silt, little coarse sand: dense: low plasticity; dry to moist (ML).	E.O.B. # 27'
					,
:					·
			į		

Project Hame Concest site	Well No. MW321
Project No. ZP3000	Location
 	Owner 9.5. EPA
	Ground Elevation No data
Date Prepared	Top of Inner Casing Elev. 746.93*
Propered by	Drilling Firm Bergerson Canuell
	Goologist R. Mackler
	Start & Completion Date 10/15/91
	Type of Rig CHE75
	Method of Drilling Mollow stem suger
WELL CONSTRUCTION	
AMMAL SO	WILL BATA
	Booles Ston 8*
	Boring Diam. 8"
	Soring Depth 51.5'
	Cosing Diam. 2" Screen Diam. 2"
10 SAID	Screen Interval 48'-58'
	Screen Type 384 Stainless wirewound
	Well Type 306 stainless steel
	Well Comptruction:
	filter Pack Silica send 38'-51.5'
20 TO	Seel H/A
	Grout Enviroplus bentonite
	Lock No. 2344
30- COWE	TEST BOTA
	Depth to Water Level:
	Maile Drilling 4.
	After Drilling 6.6' (10/30/91)
	After Completion 6.51' (12/02/91)
₩	Wydraulic Conductivity:
	Test Method
	Results
	Comments
50-18-	
4.5	
	
•	

0206

558047

security of page

7460:1

•**5** , , , , , , , ,

Project	Name	Conrail site	We 11	No.	. MW32I	
Froject	Number	ZF3000				

Sample No.	Sample Depth From - To (ft)	8low Count	Recov.	Description	Remarks
551	3 - 5	10/10/	14	Light yellowish brown fine to coarse sand. little silt, little fine gravel: medium dense: dry to moist (SW).	
552	8 - 10	7/9/9/40	16	Brown fine to medium sand; dense; saturated (SP).	
553	13 - 15	5/13/ 15/20	18	Same as above (SP).	
554	19 - 20	4/4/4/8	23	Top 12": Same as above (SP). Bottom: Brown fine gravel with some medium to coarse sand; medium dense; saturated (GP).	
S \$ 5	23 - 25	10/19/ 26/30	15	Same as above except little medium to coarse gravel (GW).	1' sand blowno.
S \$6	28 - 30	14/20/ 40/43	18	Same as above (GW).	f" blowup.
S S 7	33 - 35	6/25/ 35/60	16	Same as above (GW).	
538	30 - 40	7/10/ 17/26	24	Top 8": Same as above (GW). Bottom: Brown very fine to fine sand, little medium sand, trace silt; dense; saturated (SP).	
559	43 - 45	5/8/ 12/15	24	Brown coarse to very coarse sand, little medium sand, trace gravel, medium dense; saturated (SP).	Blowup.
5910	48 - 50	5/2/3/4	16	Brown medium to coerse send, some fine send, trace gravel: loose: saturated :W).	Overdrilled 1.5 E.O.B. @ 51.5
					·
			ļ		
				·	
		a	٠	·	

7660 - 1

Project Heme Conrail site	Well So. 19/325
Project So. 273000	Location Track 69 7' W. of HW32I
	Owner W.S. EPA
	Ground Elevation Do data
Date Propered	Top of Inner Casing Elem. 746.99"
Propored by	Drilling Firm Bergerson Caswell
	Geelegist R. Hackler
LOGY WELL CONSTRUCTION	Start & Completion Dates 10/15/91
	Type of Rig
AMMALUS	Hothed of Drilling Hollow stem auger
	WELL BATA
	Soring Diam. 8"
	Boring Depth 30"
5 E	Casind Diam. 5.
	Screen Diam. 2"
	Screen Interval 1858.
	Screen Type 304 stainless wirewound
- 240	Well Type 304 stainless steel
10-	Well Construction:
	Filter Pack Silica sand 14'-30' Seel #/A
	
	Great Enviroplus beatonite Lock Bo. 2344
	2344
15-00	TEST BATA
	Dopth to Water Level:
	While Drilling Mot determined
	After Drilling
	After Completion 4.54' (12/02/91)
1.• (∅ ⊟ ∅(••)	Wydraulic Conductivity:
1.*松田湖:3	Test Hethod
	Results
F. E. E. S. Canal	Comments
。」 。[2] [3] [4]	
1:143 章 37:7	

recycled paper

ungelië ang unganomus

Project	Name _	Conrail site	We 11	No.	HW32S
Project	Number	273000			

Sample No.	Sample Depth from - To (ft)	Blow Count	Recov. (in.)	Description	Remerks
S\$1	23 - 25	23 - 25 Not taken 6	6	Brown fine gravel: some medium to coarse sand: little medium to coarse gravel; medium dense; saturated (SP).	Stratigraphy for this location was determined while drilling MW32I. One split-spoon sample was collected and placed in an 8-or. jar.
	÷				E.O.B. 4 30'
				• •	
•					
		·			·
		·	•		·
			İ		
		·			
				·	
•					
	,		:	,	

Well No. MW311 Project Heme Conrail site Location 5' west of HM31S Project Bo. 273000 Owner 7.5. EPA Ground Elevation To data Date Prepared Top of Innet Casing Elev. 751.82 Drilling Firm Bergerson Caswell Propored by ___ Geologist R. Mackler Start & Completion Date 10/18/91 Type of Rig ___CHE75 WELL CONSTRUCTION LITHOLOGY-Method of Drilling Hollow stem auger GEPTH-WELL BATA Botine Dian. g -Boting Dopth 53' Cating Diam. 2" Screen Diam. 2" Screen Interval 42'-52' Screen Type 304 stainless virewound Well Type 384 stainless steel Well Construction: Filter Pack Silica sand 40'-53' Seal M/A Grout Enviroplug bentonite tock #0. ___2344__ TEST MATA Dopth to Water Level: While Drilling 7.0'
After Drilling <.6' '10/30/91' After Completion 4.55' (12/02/91) SANDY CLAY Mydraulic Conductivity: SAND & GRAVEL Test Nethod kesults __ Composes _ 7660:1 558047

 $\subseteq \{Y_{i_{j_1}}^{(i_{j_1})}\}$

			_	
Project	Name	Conreil site	Well Mo	. MM311
Project	Number	ZF3000		

	Sample Depth	Blow	Recov.		
Sample No.	From - To (ft)	Count	(in.)	Description	Remarks
5\$1	3 - 5	3/4/4/4	18	Top 12": Yellowish brown medium to coarse sand, trace fine sand, trace silt; loose; moist (SW). Bottom: Brown medium to coarse sand, trace fine sand, trace silt; loose, moist to dry (SW).	HW311 was drilled from 0'-23' with- out sampling; this part of the log is from HW31S.
552	8 - 10	3/5/ 6/10	18	Brown medium to coarse sand, trace coarse to fine gravel, trace fine sand; medium dense; saturated (SW).	
5\$3	13 - 15	5/10/ 10/10	16	Same as above (SW).	
554	18 - 20	5/1/5/9	23	Brown fine to medium sand, little coarse sand, trace fine gravel, trace silt; medium dense; saturated (SW).	HW315 ends here. E.O.B. # 20'
551	23 - 25	9/19/ 10/10	18	Brown medium to fine sand with some very fine sand; medium dense; saturated (SW).	HM31I sampling begins here 10/18/91.
552	20 ~ 30	6/3/6/10	10	Same as above (SW).	
553	33 ~ 35	2/2/4/8	20	Same as above except for a 1" brown clayey silt stringer at 34' (SW).	Driller notes drilling change at 35'.
554	38 - 40	6/12/ 15/20	22	Dark gray clay with some very coarse sand and some fine to medium sand: low plasticity: dense: saturated (CL).	
JS5	43 - 45	5/8/8/8	18	Top 12": Same as above (CL). Bottom: Yellowish brown gravel and very coarse to coarse sand with trace silt: medium dense: saturated (GW).	
336	48 - 50	5/4/16/23	24	Brown medium to fine send, little coerse sand; dense; saturated (SW).	Overdrilled 3' E.O.B. @ 53'
				·	
	_				
!					
	·				
•				·	

Project Hame	Comrail site	
Project So.	ZF 3000	
Date Propared		
Propered by		

Well No.	29/31S	
Location	- 100 yd. east of	f east pond on
8CC085 1	beo	
1eavO	U.S. EPA	
Scound El	evetion So deta	
top of Is	mer Casing Elev.	751.45
Drilling	firm Bergerson	Casvell
Seologist	C. Carlson	
Start & C	completion Date	10/07/91
Type of I	tig CHE75	
Nethod of	Drilling Mollo	v stem audel

DEPTH SAID

SECL SATE

Boring Diam.	<u> </u>
Boring Depth	26*
Casing Diam.	5.
Screen Diam.	3
Screen Interv	1 8.5'-18.5'
Screen Type _	394 staimless virevound
Well Type 30	4 staimless ateel
Well Construc	tion:
Filter Peck	Silica sand 4.5'-20'
SealBem	temite chips 5.8'-6.5'
Great Env	ireplug bentonite
Lock No.	2344

TEST DATA

While Drilling	10,
After Drilling	10.8" (11/01/91)
After Completion	10.50* (12/02/91)
Mydraulic Conduction	rity:
Test Nethed	
pesults	
Comments	

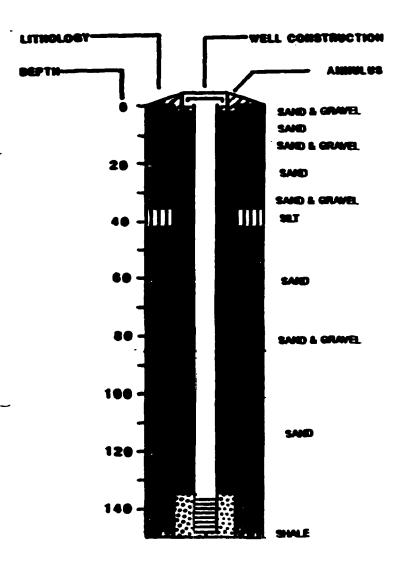
7660:1

evalues and environment

						•
Project	Name	Conrail site	·	Well No.	HW315	
Project	Number	ZF3000				

		T			<u> </u>
Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Pomerks
551	3 - 5	3/4/4/4	18	Top 12": Yellowish brown medium to coarse sand, trace fine sand, trace silt; loose; moist (SW). Bottom: Brown medium to coarse sand, trace fine sand, trace silt; loose: moist to dry (SW).	
532	8 - 10	3/5/6/10	18	Brown medium to coarse sand, trace coarse to fine gravel, trace fine sand: medium dense; saturated (SW).	
583	13 - 15	5/10/ 10/10	16	Same as above (SW).	
554	18 - 20	5/7/5/9	16 .	Brown fine to medium sand, little coarse sand, trace fine gravel, trace silt: medium dense: saturated (SW).	E.O.B. 9 20
	. !				
				,	
				·	•
					•

roject Pess	Conreil site	Well No.	19/30BR	Page 2 of 3	
rotect Susber					


Sample Se.	Sample Depth From - To (ft)	21ou Count	Recov.	Description	Remarks
554	73 - 75	24/70/100 for 4"	16	Top 12": Brown medium sand, little coarse and fine sand, trace coarse to fine gravel; very dense (SW). Bottom: Brown fine sand, trace coarse to medium sand and silt, trace fine gravel; "ery dense (SW).	
555	78 - 80	8/36/ 22/53	•	u.s.	12" loose gravel in spoom, not representative.
556	83 - 85	11/26/ 53/56	12	Brown coarse sand and coarse to fine gravel, trace fine to medium sand: very dense (SP-GM).	
5\$7	38 - °0	4/6/ 22/31	17	Bork brown coarse to fine sand, trace coarse to fine gravel and silt: very dense (SW).	Switched to 300 lb. homoer, 120 lb. homoer too light for drilling med.
558	93 - 95	10/43/ 47/53	10	Top 3": Same as above (SW). Riddle 7": Brown to pale brown silty fine sand, trace sedium to coarse sand (SW). Bettom: Dark brown coarse to fine sand, trace coarse to fine gravel: "ery dense (SW).	
559	98 - 100	10/37/ 40/50	16	Brown coarse to fine sand and gravel, little to trace silt: extremely dense; saturated (SW-GW)	Difficult drilling from 98'-103' (boulders).
\$\$10	103 - 105	19/23/ 47/57	16	Brown fine to medium sand, some course wand, little fine gravel, trace silt and course gravel; very dense: saturated (SW).	
SS11	100 - 110	23/39/ 64/73	18	Brown coarse to fine sand, trace silt and fine to coarse gravel, grading downward to fine to medium sand, trace coarse sand and fine gravel: extremely donne; saturated (SW).	
9912	113 - 115	30/32/ 54/100	10	Brown coarse to fine sand, trace silt, little fine gravel, trace coarse gravel; extremely dense; saturated (SW).	
5513	118 - 120	33/60/ 72/77	10	Same as above with little silt toward the bottom; very dense; saturated at top, wet at bottom (SW).	Difficult drilling
5514	123 - 125	24/35/ 46/70	16	Brown coarse to fine sand, little coarse to fine gravel, trace silt: extremely dense; saturated (SW).	at 122', boolders
3515	126 - 130	24/35/ 64/81	20	Same as above (SW).	
5516	133 - 135	23/34/	20	Same as above except some coarse to fine gravel (SW).	

'660:1

Project	Hame	Conrail site	Well No.	HW30BR	Page 3 of 3	
5	M	CC 1000	,			

Sample No.	Sample Depth From ~ To (ft)	Blow Count	Recov.	Description	Remarks
5\$17	138 - 140	11/18/ 21/31	20	Same as above (SW).	
5518	143 - 145	12/19/ 22/46	16	Top 6": Brown fine gravel, some coarse sand, trace fine to medium sand and coarse gravel; loose (GP). Mext 2": Dark gray clay; wet; high plasticity (CL). Mext 5": Brown coarse sand, little fine gravel (SP). Mext 1": Reddish brown to brown clay; moist (CL). Bottom: Brown coarse sand, little fine gravel, trace fine to medium sand; dense; saturated (SP).	
S S 19	146 - 149	12/100/ 100 for 4"	10	Olive gray shale: top 1° contains some iron staining: moderately fissile.	E.O.B. 9 14°
				·	
					·

Project Hame	Comrail site
Project Se.	273000
_	
Date Propered	
tropared by	

Well No. 19/3088
Location West end of classification yard
between tracks 39 and 40
OWNER W.S. EPA
Ground Elevation No data
Top of Inner Casing Elev. 747.94
Drilling Firm Borgerson Caswell
Geologist C. Carlson
Start & Completion Dates 10/15 & 10/16/9
Type of Rig Gus Pech
Method of Drilling Med rotary

WELL DATE

Boring DiamB	<u> </u>
Boring Depth 1	40-
Casing Diam. 2	•
Screen Diam 2	•
Screen Interval	137147
Screen Type 384	stainless wirewound
Well Type 304 st	simless steel
Well Construction	:
Filter Peck Si	lice send 135'-147'
Seel E/A	
Grout Envirop	lug bestonite
Lock So. 234	4

TEST DATA				
Depth to Water Leve	1:			
While Drilling	7.3*			
	*.0" (10/31/91)			
After Completion	1.17' (12/02/91)			
Hydraulic Conductive Test Hethod Results Comments				

558047

recycled paper

7660:1

codes and recipenens

Project	Mane	Conrail site	Well No	. MW30BR	Page 1 of 3
Project	Number	2F3000			

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remerks
551	3 - 5	6/4/3/3	6	Yellowish brown clayey send end gravel, little silt, (fill); loose; moist.	MW30BR was Arilled from 0'-58' with-
552	8 - 10	12/8/ 10/18	10	Brown coarse sand, little fine gravel and clay, trace fine to medium sand and coarse gravel: medium dense: wet (SP).	out sempling; this part of the log is from HW301.
553	13 - 15	27/10/ 7/8	14	Yellowish brown coarse sand and fine gravel, some silt and clay, trace fine to medium sand and coarse gravel: medium dense: saturated (SM-GM).	,
S \$4	18 - 20	3/5/ 27/50	20	Brown medium to coarse sand, some coarse to fine gravel, little fine sand, trace silt, trace small cobbles: very dense; saturated (5W).	
555	23 - 25	13/15/ 8/12	22	Same as above except medium dense (SW).	
S \$ 6	28 - 30	9/12/ 19/29	20	Top 3": Same as above (SW). Middle 9": Pale brown silty clay to clayey silt, trace fine sand, trace coarse to fine gravel; very dense: moist (ML-CL). Bottom: Brown fine to medium sand, trace coarse sand, trace silt; dense: saturated (SW).	
S\$7	33 - 35	1/2/	10	Brown coarse sand and fine gravel, trace silt and clay, trace fine sand and coarse gravel; dense; saturated (SP-GP).	
550	38 - 40	14/40/ 42/60	10	Pale brown clayey silt to sendy silt, trace coarse to fine sand and fine gravel; extremely dense; moist to wet (ML-CL).	
559	43 - 45	25/125/ 175/200	20	Pale brown fine sand, little coarse sand and coarse to fine gravel at top, little silt; extremely dense; saturated (SP).	
S 3 10	48 - 50	4/6/ 40/40	24	Brown silt, medium sand. little coarse sand. little fine sand. trace fine gravel; very dense; saturated (SP).	
S \$ 11	53 - 55	18/34/ 42/40	18	Pele brown fine to medium sand. little silt, trace coarse sand and fine gravel; very dense; saturated (SP).	MW301 ends here. E.O.B. 9 55'
551	58 - 60	13/48 60/37	18	Brown to grayish brown medium sand, little coarse and fine sand, trace silt and fine gravel; very dense; saturated (SW).	HW30RR sampling begins here 11/15/91
552	43 - 65	22/49/ 58/91	16	Same as above except dark brownish gray (SW).	
5\$3	68 - 70	22/61/ 94/93	20	Same as above except brown (SW).	

Preject Hese	Concell site	
Project Bo.	2F3000	
Date Propered		
frepared by		

OEPTH-	AMMULU
	SWD & GWE
	SAID
	SAND I GUAR
20 -	****
-	SAID & GRAVEL
40-	*
60-	SAID
80 -	SAND A GRAVEL
- 28:=	SARD
100 -	
107 - Bar	

Well No.	19/300
Location	West end of classification yard
between	tracks 39 and 40
OVER	T.S. EPA
Ground El	evetion So deta
Top of Is	mer Casing Elev. 748.09'
Drilling	Firm Borgerson Caswell
Geologist	2. Mackler_
Start & C	ompletion Date 10/20/91
Type of B	ig CME75
• -	
Hethod of	Drilling Mollow stem suger

WELL WATE

Boring Diam.	<u> </u>
Boring Depth	107*
Casing Diam.	2*
Screen Dies.	5-
Screen Interv	al
Screen Type	304 stainless virewound
Well Type 30	4 stainless steel
Well Construc	tion:
Filter Pack	Silica sand 22.7'-107'
Seal	'A
Grout En	iroping beatonite
Lock Bo.	2344

TEST DATA

Cile Drilling	• 21	
	?.1' (10/31/91)	
rttet Combietion	3.28. (12/02/31)	
	••••	
Ireulic Conductiv	•	
rest Nethod		
Results		
comments		
<u> </u>		

7660:1

558047

coder and enterent

			I		
mple No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
				Drilled to 107' for well construction with- out sampling.	
				See log MW30BR for stratigraphy at this location.	E.O.B. @ 107
	·				
				·	
]
	·			_	
				•	
					İ
				•	
					[
					}
					ļ
				·	
•					
					,

Project Name Contail site
Project No. 273000

Date Prepared _______
Prepared by ________

LITHOLOGY	we	LL CONSTRUCTION
DEPTH		
	司上	AMMULUS
i-mad	7~~	SAID & GRAVEL
		•
20-		SAID
, AS	55	GANE.
40-		
•		
60-		
•		SAID
10-		
-		
-		
100-		
-		
120-120-120-120-120-120-120-120-120-120-		
126		

Well Mo.	:99140	
Location	East of Ash Rd.	opposite
Charles .	Ave.	
Over	T.S. EPA	
Stound El	evetion _ So deta	.
Top of In	mer Casing Elev.	739.71*
Drilling	Firm Bergerson	Caswell
Geologist	L. Lueck	
Start & C	empletion Dates	11/04-11/05/91
Type of R	ig <u>Gus Poch</u>	
Hethod of	Drilling Med	rotery

WELL DATA

Boring Diam.	9"
Poring Dogth	125.
Casing Diam.	2-
Screen Dien.	•
Screen Interva	1115*-125*
Screen Type _3	04 staimless virevound
Well Type 304	stainless «teel
Well Construct	ion:
Filter Pack	Silica cand 112'-125'
Seal E/A	
Grout Envi	roplug bentonite
Lock No.	2344

TEST DATA

Dopth to Water Sevel:

While Drilling 14.8'

After Drilling 16.5' (11/86/91)

After Completion 16.63' (12/82/91)

Rydraulic Conducti-ity:

Test Hethod

Results

Comments

7660:1

. ...

558047

Froject	Name	Conrail site	Well	Mo.	99444D	Fege 1	21	•
								<u> </u>
Project	Number	ZF3000						

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remorks
551	3 - 5	3/4/5/6	6	Brown fine to course sand; medium dense; moist (SW).	Driller uses only about 20" hammer drop, blow counts abnormally high.
552	8 - 10	3/3/7/12	14	Brown sand and gravel (SW-GW), grading down to light brown fine sand; medium dense; moist (SP).	
5\$3	13 - 15	6/11/	13	Brown fine to coarse sand, little fine to medium gravel; medium dense; wet (SW)	
554	18 - 20	11/17/ 23/29	8	Brown medium to coarse sand, trace gradel, trace fine sand: wery dense; wet (SW)	
555	23 - 25	11/9/ 23/29	18	Medium brown fine sand, little silt, trace clay, trace fine to medium gravel: very dense: wet (SP).	
556	28 = 30	17/33/ 50/75	0	Coarse sand and gravel.	Driller's quess. Somewhat hard drilling 30'-11': small ten clay balls in cuttings
S\$7	33 - 35	15/20/ 37/40	19	Tan fine sand, little medium sand; very dense; wet (SP).	
558	38 - 40	21/21/ 21/26	18	Light brown fine to medium sand, trace silt: dense; wet (SP).	
\$\$9	43 - 45	21/27/ 41/50	19	Same as above (SP).	
5510	48 - 50	21/44/ 57/61	18	Same as above (SP)	
5511	53 - 55	13/30/ 40/50	22	Same as above (SP).	
5512	58 - 60	20/20/ 20/20	21	Medium brown fine to medium send, little coarse send, little silt, trace fine gravel: medium dense; wet (SW).	
5513	63 - 65	19/22/ 28/30	20	Brown fine to coarse mand, trace fine to medium gravel, trace silt: very dense; wet (SW).	
SS14	68 – 70	24/40/ 40/41	19	Brown medium to coarse sand, little fine gravel, trace fine sand, trace silt; extremely dense; wet (SW).	
5515	73 - 75	19/30/ 30/30	18	Same as above (SW).	
5516	78 - 80	21/49/ 50/50	21	Same as above (SW).	

reject Name Conrail site Mell No. 1994388 Page 2 of 3
reject Number 273000

Sample So.	Sample Depth From - To (ft)	Slow Count	Rocev.	Description	Remarks
5510	63 - 45	16/19/ 30/33	10	Brown fine to coarse sand, some gravel, grading down to fine to medium sand; bottom 1 1/2" distinctly reddish brown; very dense; wet (SW).	
5511	68 - 76	24/35/ 49/53	21	Brown fine to coarse sand, trace to little fine gravel; extremely dense; wet (SW).	
\$512	73 - 75	15/29/ 44/46	18	Same as above (SW).	
5513	78 - 80	20/23/ 42/46	17	Brown fine to medium sand; extremely dense; upt (SF)	
5514	03 - 05	27/41/ 50/58	23	Orown fine to course sand, trace fine to medium gravel: extremely dense: wet (SW).	: !
5515	88 - 90	21/20/ 31/40	21	Brown fine to coarse sand, trace fine to medium gravel: very dense: wet (SW1.	•
5316	9395	36/41/ 90/100	17	Brown fine to coarse sand, little fine to medium gravel, trace silt: this clay rind ea bottom 2" of sample: extremely dense: wet (SW).	
\$\$17	98 - 100	24/45/ 62/75	21	Brown fine to coarse sand, trace fine to medium gravel, trace silt: extremely dense: uet (SW).	
5518	103 - 105	19/19/ 34/42	10	Brown fine to medium sand, little fine to medium gravel, trace silt: wery dense: wet (SW).	Rough drilling from about
5519	100 - 110	22/34/ 56/61	15	Brown fine to coarse sand, some gravel, trace silt: extremely dense: set (SW).	106'-198'
332 0 -	113 - 115	19/23/	14	Brown to orange-brown send and gravel (some gravel clasts 1.5"), trace silt; extremely dease; wet (SM-GM).	Grange color seems to come from crushed orange gravel and a plug of orange silt in drive shoe.
5521	116 - 120	22/29/ 61/63	19	Brown fine to medium sand, trace fine gravel: extremely dense: wet (SP).	
5522	123 - 125	33/61/ 67/75	21	Reddish brown fine to coarse sand, trace fine gravel (also few 1° layers with little fine to medium gravel), trace silt: extremely dease: wet (SW).	
5523	128 - 130	20/26/ 55/64	14	Tannish brown fine to coarse sand, little fine to coarse gravel, trace silt: extremely dense; wet (SW).	•
\$\$24	133 - 135	10/23/	16	Brown fine to medium sand: "ery dense: met	

:660:1

		armail sina	Well No.	MW438R	Dama 3 - 6 3	
?roject	14 8 MG	Conrail site	MATT 110'	ISMAJOR	Page 3 of 3	

ample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remark« _,
5525	138 - 140	15/26/ 31/54	13	Same as above but extremely dense (SP).	
s \$ 26	143 - 145	18/26/ 26/34	18	Tannish brown fine send, little medium send: very dense; saturated (SP).	
5527	148 - 150	15/28/ 32/42	20	Same as above (SP).	
5528	· 153 - 155	15/34/ 41/56	14	Brown fine to coarse sand, little fine gravel, trace silt; extremely dense; wet (SW).	
S S 29	156.5'-150.5'	98/100/ 100 for 3"	10	Top 3": Gravel with some coarse sand (GW). Bottom 7": Bluish gray shale bedrock.	Rough drilling, abundant gracel in cuttinge: dri not advancing pa
	·			·	156.5' E.O.B. @ 158.5'
		·			
				·	
				,	
:					•
•				·	
				-	· .

Project Name Conrail site	Vell No :mrijsk
Froject No. 273000	Location Near west end of Charles Ave.
	Owner U.S. EPA
	Ground Elevation No data
Dete Prepared	Top of Inner Casing Elev. 728.60'
Propored by	Drilling firm Borgerson Caswell
	Goologist L. Luck
	Start & Completion Dates11/01-11/03/
	Type of Rig Gus Pech
DET WELL CONSTRUCTION	Method of Drilling Med rotary
AMMALUS	
	WELL DATA
SAID	Boring Diam. 8"
	Soring Depth 158.5'
NIVY CLAYER SET	Casing Diam. 2"
20- SELTY SAID	Screen Diam. 2"
	Screen Interval 146.5'-156.5'
	Screen Type 304 stainless wirewound
40-	Well Type 304 stainless steel
	Well Construction:
	Filter Fack Silica sand 141'-156.5'
	See1
60-	Grout Enviroplug bentonite
SAID	Lock No. 2344
80- 	
	TEST BATA
	Depth to Weter Level:
100-	While Drilling 6.7
	After Drilling 2.4' (11/04/91)
SAID & GAVEL	After Completion 3.00" (12/02/91)
120-	
	Rydraulic Conductivity:
	Test Hethod
SAID	Results
140-	Comments
156.5- SWE	

558047

recycled paper

reduce and entirement

Project Name Conrail site Well No. MW43BR
Project Number ZF3000

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Pemarks
SS1	3 - 5	6/5/3/4	20	Top 12": Derk brown fine to medium send, trace coarse sand and clay; wet (SP). Bottom: Brownish yellow fine to medium sand, trace coarse sand and fine gravel; loose; moist (SP).	MW43PR was drilled to 18' without sampling; this part of the log is from MW43s.
552	8 - 10	6/4/3/5	16	Brownish yellow silty fine sand to fine sand, some silt, trace medium sand; loose; saturated (SM).	
553	13 - 15	6/9/11/12	18	Top 12": Brown medium sand, little fine and coarse sand, trace fine gravel; medium dense; saturated (SP). Bottom: Pale brown clayey silt, trace coarse to fine sand; dense; moist to dry (ML).	
954	16 - 18	6/8/16/30	16	Same as above (ML).	MM435 ends here E.O.B. # 18'
					MW43RR sampling begins here 11/01/91
\$51	18 - 20	41/61/ 65/56	16	Top 3": Gravish ten clayey silt, trace fine to medium gravel (ML). Bottom: Tan silty sand, trace gravel, with layers of sandy silt approximately 1" thick; extremely dense; moist (SM).	Driller uses only about 20" hemmer drop, blow counts abnormally high.
552	23 - 25	27/41/ 57/61	12	Brownish gray fine to medium sand, trace fine gravel in upper 2": extremely dense; saturated (SP). 1" of hard grayish clayey silt i drive shee (ML).	Slow drilling from 23' to 28'; abundant small clay balls in cuttings.
553	28 - 30	20/43/ 47/51	24	Dark gray sandy silt, trace fine 'ravel; hard; moist (ML).	
S \$4	33 - 35	20/28/ 46/53	21	Brown fine to medium sand, trace coarse sand; extremely dense: wet (SP).	·
555	38 - 40	30/33/ 34/46	16	Brown fine to medium sand (gravel clast 1.5" diameter on top); very dense: wet (SP).	Below 40' driller reports going through "clay" again.
556	43 - 45	22/25/ 49/50	19	Brown fine to medium sand, trace coarse sand: extremely dense; wet (SP).	
557	48 - 50	14/14/ 22/28	10	Brown fine sand, little silt; dense; saturated (SM).	
558	53 - 55	14/15/ 22/30	23	Brown fine to medium sand, trace coarse sand in 1" bands; very dense; wet (SP).	
559	58 ~ 60	14/18/ 28/33	18	Brown fine to coarse sand, trace fine to medium gravel; wery dense; wet (SW).	44
	ĺ				•

7660:1

Page 1 of 3

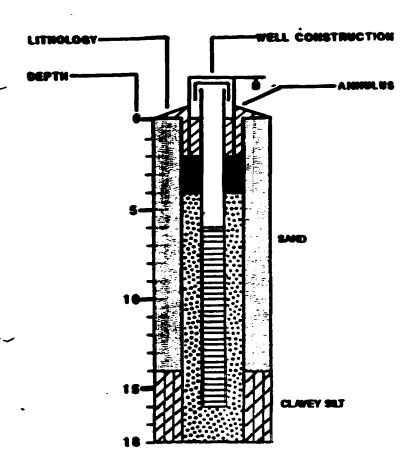
Well No. INMAS

Location Hear west end of Charles Ave.

Owner U.S. EFA

Ground Elevation No data

Top of Inner Casing Elev. 728.92'


Drilling Firm Bergerson Caswell

Geologist C. Carlson

Start & Completion Date 10/30/91

Type of Rig CME75

Method of Drilling Mollow stem auger

WELL BATA

Boring Diam. 8"

Boring Depth 17'

Casing Diam. 2"

Screen Diam. 2"

Screen Interval 6'-16'

Screen Type 384 stainless wirewound

Well Type 384 stainless steel

Well Construction:

Filter Pack Silica and 4'-18'

Seal H/A

Grout Enviroplus bentonite

Lock No. 2344

TEST BATA

Depth to Mater Level:

While Drilling 7.4'

After Drilling 8.5' (11/04/91)

After Completion 7.76' (12/02/91)

Burde au	110	Conduct	iwite.

Test Nethod
Results
Comments

558047

recycled paper

7660:1

crobery and emironment

Project	Name	Conrail	site	Well 1	No.	MW435	
Rendade		753000					

Sample No.	Sample Depth From - To (ft)	Blow	Recov.	Description	Pomarks
S \$ 1	3 - 5	6/5/3/4	20	Top 12": Dark brown fine to medium sand, trace coarse sand and clay; wet (SP). Bottom: Brownish yellow fine to medium sand, trace coarse sand and fine gravel; losse; moist (SP).	
552	8 - 10	6/4/3/5	16	Brownish yellow silty fine send to fine sand, some silt, trace medium sand; loose; saturated (SM).	
\$ \$ }	13 - 15	6/9/11/22	15	Top 12": Brown medium sand, little fine and coarse sand, trace fine gravel; medium dense; saturated (SP). Bottom: Pale brown clayey silt, trace coarse to fine sand; dense; moist to dry (ML).	
S S4	16 - 18	6/8/16/30	16	Same as above (ML).	E.O.R. # 18'
	: '				·
:					•

Project Hame Conrail site	Well No. MMCZI		
Project No. 273000	Location W.S. 33 at intersection (RI		
	Owner U.S. EPA		
	Ground Elevation Bo data		
Date Propered	Top of Inner Casing Elev.		
Propored by	Drilling firm Bergerson Caswell		
	Geologist C. Carison		
	Start & Completion Date 10/30/91		
	Type of Rig CHE75		
THOLOGY	Mothod of Drilling Mollow stem auger		
1 1			
ANNOU. US	WELL DATA		
	terine Nice - 0"		
	Boring Diam. 8"		
	Boring Depth 52*		
	Casing Diam. 2" Screen Diam. 2"		
	Screen Interval 40-1'-50.1'		
	Screen Type 304 stainless wirewound Well Type 304 stainless steel		
	Well Construction:		
	Filter Pack Silics sand 38'-52'		
	Seel M/A		
	Grout Enviroplug bentonite		
20-777	Lock No. 2344		
SETY CLAY			
	TEST GATA		
	 -		
30-1-1-1	Copth to Water Level:		
	While Drilling 5.5'		
SELTY SAND	After Drilling 10.4' (11/02/91)		
	After Completion •.99' (12/02/91)		
40-15 8 _ 8 11	Bydraulic Conductivity:		
	Test Hethod		
	Results		
	Comments		
SAND			
50-1			
32			
34"			

recycled pape

7660:1

evalues and environment

558047

Project	Name	Conrail site	Well	No.	HM42I
Prosect	Number	ZF3000			

SS2 8 - 10 4/5/4/7 14 Brown coarse to fine mand, little fine gravel, trace coarse gravel and clay: medium dense: saturated (SW). SS3 13 - 15 5/10/ 12/8 12/8 Top 18": Same as above with fine to medium gravel in drive shoe (SW). SS4 18 - 20 10/14/ 20/25 Top 18": Same as above (SW). Bottom: Pale brown silty clay to clayey silt, trace coarse to fine sand, trace fine gravel; dense: moist (NL-CL). SS5 23 - 25 8/10/ 32/36 Top 12": Same as above (HL-CL). Bottom: Brown silty fine sand, trace medium sand: dense: saturated (SM). SS6 28 - 30 10/20/ 35/40 Top 6": Fine gravel, little coarse to medium sand: saturated (GP). Bottom: Brown silty fine sand: "ery dense: saturated (SM). SS7 33 - 35 12/15/ 32/40 Same as above, but with 4" coarse sand end fine gravel lense from 34" - 34.3" (SM). SS8 38 - 40 10/20/ 20 Same as above (SM). SS9 43 - 45 12/20/ 20 Same as above (SM). Bottom: Brown medium sand, little coarse and fine sand, trace silt and fine gravel: dense: saturated (SF). SS10 48 - 50 4/15/ 24 Top 12": Brown fine sand, little silt, trace medium sand: dense: saturated (SF). Bottom: Brown fine to medium sand, little coarse sand; dense: saturated (SF). Bottom: Brown fine to medium sand, little coarse sand; dense: saturated (SF). Bottom: Brown fine to medium sand, little coarse sand; dense: saturated (SF).		Sample Depth rom - To (ft)	Blow Count	Recov.	Description	Remarks
	551	3 - 5	4/1/2/3	14		Probable fil:
18 - 20	552	8 - 10	4/5/4/7	14	gravel, trace coarse gravel and clay: medium	
20/25 Solution: Pale brown silty clay to clayey silt, trace coarse to fine sand, trace fine gravel; dense; moist (NL-CL). 32/36 18	553	13 - 15	1 '	16		
32/36 32/36 32/36 33/36 28 - 30 10/20/ 35/40 16 Top 6": Fine gravel, little coarse to medium sand; saturated (SM). Top 6": Fine gravel, little coarse to medium sand; saturated (GP). Bottom: Brown silty fine sand; very dense; saturated (SM). Same as above, but with 4" coarse sand and fine gravel lense from 34" - 34.3" (SM). Same as above (SM). Same as above (SM). Same as above (SM). Same as above (SM). Soltom: Brown medium sand, little coarse and fine sand, trace silt and fine gravel; dense; saturated (SF). Same as above (SM). Same as above (SM). Soltom: Brown medium sand, little coarse and fine sand, trace silt and fine gravel; dense; saturated (SF). Soltom: Brown fine cand, little silt, trace medium sand; dense: Brown fine to medium sand, little coarse sand, trace silt: dense; saturated (SM).	554	18 - 20		24	Bottom: Pale brown silty clay to clayey silt, trace coarse to fine sand, trace fine	
sand: saturated (GP). Bottom: Brown silty fine sand: very dense: saturated (SM). Same as above, but with 4" coarse sand and fine gravel lense from 34' - 34.3' (SM). Same as above (SM).	s s 5	23 - 25		18	Bottom: Brown silty fine sand, trace medium	
SS8 38 - 40 10/20/ 20 20 Same as above (SM). SS9 43 - 45 12/20/ 20/20 24 Top 18": Same as above (SM). SS10 48 - 50 4/15/ 20/23 24 Top 12": Brown fine cand, little silt, trace medium sand; dense: saturated (SP). SS10 48 - 50 4/15/ Bottom: Brown fine to medium sand, little coarse sand, trace silt: dense; saturated (SW). E.O.8.	336	28 - 30		16.	sand: saturated (GP). Bottom: Brown silty fine sand: very dense:	
20/25 12/20/ 20/20 Top 18": Same as above (SH). Sottom: Brown medium sand, little coarse and fine sand, trace silt and fine gravel: dense: saturated (SF). Top 12": Brown fine cand, little silt, trace medium sand; dense: saturated (SP). Bottom: Brown fine to medium sand, little coarse sand, trace silt: dense: saturated (SW). E.O.B.	557	33 ~ 35		20		
SS10 48 - 50 4/15/ 20/23 24 Top 12": Brown fine and, little silt, trace medium sand; dense; saturated (SP). Bottom: Brown fine and, little silt, trace medium sand; dense; saturated (SP). Bottom: Brown fine to medium sand, little coarse sand, trace silt; dense; saturated (SW). E.O.8.	558	38 - 40		20	Same as above (SM).	
medium sand; dense: saturated (SP). Bottom: Brown fine to medium sand, little coarse sand, trace silt: dense; saturated (SW). E.O.S.	559	43 - 45		24	Bottom: Brown medium sand, little coarse and fine sand, trace silt and fine gravel;	
	5510	48 - 50		24	medium sand; dense: saturated (SP). Bottom: Brown fine to medium sand, little coarse sand, trace silt: dense; saturated	E.O.B. # 52°
		4				
		da	. .			
		:			·	

reject Number 2F3000	Well Ho.	r#41	Page 2 of 2	

Sample 30.	Sample Depth From - To (ft)	Blow Count	Rocev. (in.)	Coscription .	Remarks
351)	43 - 45	11/20/ 23/40	24	Same as above 'SW1.	
3514	48 - 70	18/23/ 27/37	24	Same as above (SWI.	
5315	73 - 75	10/14/	24	Same as above but with two fine send seems from 73.4'-73.7' and 74.6'-75' (SW).	₹.0.8. # 76°
i					
!					
			ı	 	
		,,			
		:			
		1			
					•
!					
1	1	1			
	:				1 2
	; { 				
					!

recycled page

coulon and environmen

Project No. ZF3000	Well No. MW41 Location Highway 33 east of CRI
Project No. Zrauvo	Owner U.S. EPA
	Ground Elevation No data
Date Prepared	Top of Inner Casing Elev. 741.55'
	Drilling firm Rergerson Caswell
Prepared by	Geologist C. Carlson
	Start & Completion Date 10/29/5
	Type of Rig CHE 75
WELL CONSTRUCTION	
	Method of Drilling Hollow stem :
AMNULUS	
	WELL DATA
SAND	
- SAND & GRAVEL	Boring Diam. A"
	Boring Depth 75'
10-12-20-13-20-20-20-20-20-20-20-20-20-20-20-20-20-	Casing Diam. 2"
SAND	Screen Diam. 2"
	Screen Interval 55'-75'
	Screen Type 304 stainless wirewor
20- GRAVEL	Well Type 304 stainless steel
	Well Construction:
	Filter Pack Silics sand 67.5'
	Seil N/A
30-	Grout Enviroplug bentonite
	Lock No. 2344
40- SAID SAID	
	TEST DATA
	Depth to Water Level:
	While Drilling _ <-
5 0-4	After Drilling 7.3' (11/02/9)
	After Completion 7.00' (12/02/
	7.10
SAID & GRAVEL	Mydraulic Conductivity:
	Test Method
	Results
SAND	Comments
70-	
/ G	
	
•	

recycled paper

ecology and environment

		Contail	Well W	ю	:941	Fage 1 of 2
Project	Tenber	27300				

Sample To.			Rocov.	Description	Pomerko	
SS1 3 - 5		5/3/3/4	20	Top 7": Grayish brown medium to course sand. trace fine sand, trace clay: moist. Bottom: Derk gray course sand and fine gravel, limestone fragments, some clay: loose: meist.	Frobable fill material	
583	8 - 10	5/5/1/1	20	Grown medium to coarse sand, some fine gravel, trace coarse gravel and clay; medium dense; seturated (SW).		
55)	13 - 15	9/16/ 16/25	24	Brown medium to coarse sand, little fine gravel, trace fine sand wilt; dense; saturated (SW).		
354	10 - 20	15/25/ 25/32	24	Top 12": Same as above (SW). Bettom: Very dark grayish brown coarse to fine gravel, some coarse said, trace silt and fine sand: very dense: saturated (GW).		
203	23 - 25	1/8/16/25	24	Top 12": Dark grayish brown medium to contro- sand, trace fine gravel and fine sand: dense: saturated (SP). Bettom: Yellowish brown silty fine sand: dense: saturated (SR).		
596	28 - 30	1/5/25/55	24	Yellowish brown fine to medium sand, trace silt; very dense: saturated (SP).		
2\$ 7	33 - 35	8/16/ 35/60	24	Top 14": Same as above (SP). Bottom: Tellewish brown silty fine sand; dense; saturated (SN).		
558	28 - 46	4/7/10/20	24	Top 12": Yellowish brown fine to medium sand, trace silt: dense: saturated (SP). Riddle 6": Tellowish brown silty fine sand; saturated (SH). Bettom: Tellowish brown fine to medium sand, trace silt: dense: saturated (SP).		
589	43 - 45	9/12/	24	Same as above: "ery dease (SP).		
3319	40 - 50	5/25/ 50/-	24	Top 12": Brown modium send, trace coarse sand, fine sand, and fine gravel; modium dense: saturated (SP). Riddle 6": Tellewish brown milty fine mand (SN). Bettom: Brown modium sand, trace coarse sand, fine sand, and fine gravel; dense; maturated (SP).		
53 [1	53 - 55	3/3/4/12	24	Same as above: medium dense (57).		
2215	50 - 60	6/21/ 30/40	24	Top 12": Brown fine gravel and coarse eand, trace cearse gravel and fine to medium sand: saturated (SP-GP). Betton: Very dark gravish brown coarse sand.		
	! :			some coarse to fine gravel, little fine to medium sand: very dense; saturated ISW).		

Froje	ct Name Conrail site	Well No. :N40
Froje	et No. <u>273000</u>	Location US30 S. of Alco Tool Supply
	 	Owner U.S. EPA
		Ground Elevation No data
	Prepared	
Freps	red by	Drilling Firm Bergerson Caswell
		Geologist C. Carlson
	•	Start & Completion Date 10/28/91
LITHOLOGY	WELL (CONSTRUCTION Type of RigCHE75
	1 1	Mark of a factorial and a second
DEPTH	- I <u>I</u>	Method of Drilling Hollow stem auger
		AMMULUS
-		•
		AMP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1	WELL DATA
	4 12 22	. Boring Diam. 8"
		· · · · · · · · · · · · · · · · · · ·
	-4-4 [88]	Boring Depth 31'
	5	Casing Diem. 2"
		Screen Diam. 2" Screen Interval 20'-30'
		Screen Type 304 stainless wirewound
		Well Type 304 stainless steel
		Well Construction:
		Filter Peck Silica sand 18'-30'
		Seel N/A
		Grout Enviroplug bentonite
•		Lock No
1	15	<u> </u>
		TEST DATA
		Depth to Water Level:
2		While Drilling 11.5'
		After Drilling 14.3' (11/02/91)
		After Completion 14.07' (12/02/91)
2		Hydraulic Conductivity:
•		Test Hethod
	7 8 = 8	Results
		Comments
3	10-4 F: 1-1: 1	
_		
3	1-	
•		
	·	
•	•	
		· · · · · · · · · · · · · · · · · · ·
7660.		558047

recycled paper

rology and environment

Project Number	Conrail site	Well Ro.	. H949	

Sample Ye.	Sample Dopth From - To (ft)	Blow Count	Recov.	Pescraption	Panaska
551	3 - 5	3/3/3/4	16	Derk yellowish brown medium to coarse sand, little fine eravel, trace fine sand and silt, trace cobble: loose: moist (SW).	
\$ \$2	8 - 10	6/8//2/10	16	Pole brown medium to coarse sand, little coarse to fine gravel, trace fine sand; medium dense: moist to dry (SW).	
\$\$3	13 - 15	4/4/5/8	16	Brown fine to medium sand, some coarse sand, trace fine gravel: medium donse: saturated (SM).	
554	10 - 20	4/4/6/10	16	Same as above (SW).	•
155	23 ~ 25	4/7/11/15	16	Top 6": Same as above except course to fine sand (SW). Bottom: Tellowith brown fine sand, little medium sand, trace silt, medium dense: saturated (SP).	
536	26 - 36	4/6/10/12	24	Brown to yellowish brown medium to coerse send, trace fine send and fine gravel, grading down to medium send, some fine send, trace coerse send; medium desse: seturated (SW).	E.O.B. # 31*
					i

Brosect Mane Conrail site	Well No. ::W39
Project Neme Conrail site	Location Huy. 33 S. of Redwood Restauran
Project No. 2F3000	Owner U.S. SPA
· · · · · · · · · · · · · · · · · · ·	Ground Elevation No data
Date Prepared	Top of Inner Casing Elev. 752.88'
Frepared by	Drilling firm Bergerson Ceswell
	Geologist C. Carlson
	Start & Completion Date 10/28/91
	Type of RigCME75
LOGY WELL CONSTRUCTION	
	Method of Drilling Hollow stem suger
AMMULUS	WELL DATA
7 1 1 1 1 1	
	Soring Diam. 8"
	Boring Depth 31'
	Casing Diam. 2
	Screen Diam. 2"
	Screen Interval 20'-30'
	Screen Type 304 stainless wirewound
	Well Type 104 stainless «teel
10-1-2-1-1-1	Well Construction:
	Filter Pack Silica sand 18'-30'
	Grout Enviroplug bentonite
SAND	Lock No. 2344
15-1 1 1	
	TEST DATA
	Depth to Water Level:
	While Drilling 12'
	After Drilling 13.6' (11/02/91)
	After Completion 13.42' (12/02/91)
	Hydraulic Conductivity:
25-1-21:	Test Method
	Pesults
1	Comments
	
31	

recycled paper

ecology and environment

Project Se	co Contail site	/e[1 1	Ho.	M/39	

Sample So.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Rimerks
551	3 - 5	6/6/2/9	16	Dark yellowish brown fine to medium send, trace coarse sand and silt: medium dense: meist (SW).	
95 2	0 - 10	3/2/4/5	19	Top 11°: Same as above (SW). Bottom: Brown coarse sand, some medium sand and fine gravel, trace fine sand and coarse gravel: loose: moist (SW).	
\$\$)	- 13 - 15	3/4/7/6	19	Dark grayish brown medium to coarse sand. little fine sand and coarse to fine gravel. trace silt: medium dense: saturated (SN).	
554	10 - 20	4/4/6/13	20	Same as above except trace fine to medium grave); medium denue: saturated (SW).	
55 5	23 – 25	4/1/15/10	20	Same as above with a 2" silty fine sand leyer at 24.5" (SW).	r
586	20 - 30	11/3/6/8	26	Top)": Same as above (SW). Riddle 10": Brown fine sand, trace silt and modium sand; medium dense: saturated (SP). Bottom: Brown coarse to fine sand, same fine to medium gravel, trace silt and coarse gravel: medium dense: saturated (SW).	8:0:8: 0 31,
	;				
		i ! !			
				T N	
		; ;			
1		<u> </u> 			
	,	,			

roject Name Contail site Well No. MW38D Page 2 of 2	
Husbar 781000	

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Pemerks
\$\$9	63 - 65	10/20/ 27/40	24	Top 6": Brown fine gravel, little medium to coarse sand; dense; saturated (GP). Middle 12": Brown medium to coarse sand, little fine sand, trace coarse to fine gravel and silt; dense; saturated (SW). Bottom: Yellowish brown fine to medium sand, trace coarse sand and silt; dense; saturated (SW).	
SS10	58 - 70	2/6/6/16	0	No recovery of undisturbed soil.	Some pravel in split-spoon from attempt to wash heave out of boring.
3511	73 - 75	5/5/ 10/16	16 .	Top 3": Brown fine gravel, some coarse sand, trace fine to medium sand; loose; saturated (GW). Bottom: Brown fine to medium sand, trace	
	·			coatte sand and fine gravel: medium dense: saturated (SW).	
SS12	78 - 80	4/7/9/20	16	Brown medium to coarse sand, little fine gravel, trace fine sand and medium to coarse gravel; medium dense; saturated (SW).	
5513	83 - 85	15/21/ 29/55	24	Same as above (SW).	
5514	88 - 90	11/15/ 25/38	24	Brown coerse sand, some medium sand, trace fine sand and fine gravel; dense; saturated (SW).	
5515	93 - 95	10/22/ 37/48	24	Same as above (SW).	
5516	98 - LOO	8/10/ 20/24	16	Brown fine to medium sand, some coarse sand, trace fine gravel; dense; saturated (SW).	E.O.B. # 103
				·	
		,			•
				•;	

Project Same Contail Site
Project So. 273000

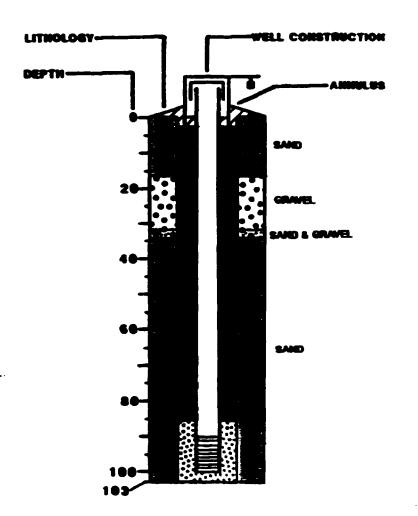
Date Propered Propered by

Mell Me. 1989
Location Berber shop on Ash Road

Owner U.S. EPA

Ground Elevation To data

Top of Inner Casing Elev. 736.84'


Crilling firm Bergerson Caswell

Geologist C. Carlson

Start & Completion Dates 18/31/91

Type of Rig CNE75

Method of Drilling Bollow stem auger

WELL BATA

Boring Diam. 8°

Boring Dopth 103'

Casing Diam. 2°

Screen Diam. 2°

Screen Interval 29'-100'

Screen Type 304 stainless wirewound

Well Type 304 stainless atool

Well Construction:

Filter Pack Silica sand 85'-103'

Seel 8/A

Grout Enviroplus bentonite

Lock Bo. 2344

TEST DATA

Depth to Mater Level:

While Orilling 12.8*

After Orilling 15.3* (11/03/91)

After Completion 15.07* (12/02/41)

Bydraulic Conductivity:

Test Method

Comments

7660:1

recycled paper

• • •

coder and entirement

0238

Project Name Conrail site
Project Number 2F3000

Well No. MW38D Page 1 of 2

Sample No.	Sample Depth From - To (ft)	Blow Count	Recov. (in.)	Description	. Remarks
ssi	3 ~ 5	4/5/6/6	19	Dark yellowish brown fine to medium sand, trace fine gravel; loose; dry; grading into grayish brown fine to medium sand, some fine gravel; loose; dry (SW).	MW38D was drilled from 0'-23' with- out sampling; this part of the log is
552	8 - 10	6/2/2/2	15	Tellowish brown fine to medium sand, trace cobbles; loose; dry (SF).	from MW385.
553	13 - 15	4/1/1/1	16	Dark yellowish brown medium to coarse sand, some fine sand; loose; saturated; grading into fine to medium sand, little fine gravel (SW).	·
554	18 - 20	10/10/ 16/16	14	Brown medium to coarse gravel, some coarse to fine sand, some small cobbles; medium dense; saturated (GW-SW).	·
					MW385 ends here
551	23 - 25	ר/ר/ר/ר	12	Brown fine to medium gravel, trace coarse sand and fines; medium dense; saturated (GW).	E.O.B. # 23' MW38D sampling begins here 10/31/91
552	28 - 30	3/7/ 15/16	16	Dark brown coarse to fine gravel. little coarse to fine sand, trace silt; medium dense; saturated (GW).	
523	33 – 35	5/17/ 25/40		Top 6": Dark brown coarse to fine sand and fine gravel; saturated (SW). Mext 5": Dark brown coarse to fine gravel, trace coarse to fine sand (GW). Mext 7": Yellowish brown fine sand, little silt; medium dense: saturated (SP). Bottom 6": Brown medium sand, some fine sand, trace silt and coarse sand; dense; saturated (SW).	
534	38 - 40	5/12/ 50/60	20	Same as above (SW).	
585	43 - 45	15/35/70 80 for 2°	24	Same as above grading to well-sorted medium sand, trace fines at bottom (SW-SP).	
336	48 - 50	22/21/ 25/40	24	Brown medium sand, little fine sand, trace coarse sand and coarse to fine gravel; dense; saturated (SW).	
5\$7	53 - 55	30/30/ 40/50	24	Top 12": Brown coarse sand, some coarse to fine gravel, trace fine to medium sand; dense: saturated (SW-GW). Bottom: Brown medium sand, little fine sand, trace coarse to fine gravel and cobbles; dense: saturated (SW).	
358	58 - 60	6/19/ 40/75	24	Brown medium send, some coarse and fine sand, little coarse to fine gravel, trace silt; extremely dense; saturated (SW).	

Andrea Mana Compail atta	
Project Name Conroll site	Well No. MM388
Project No. ZF3000	Location Bozzeta, adjacent to LSA4
	Owner U.S. EPA
	Ground Elevation Mo data
Date Prepared	Top of Inner Casing Elem. 737.15'
tropared by	Drilling Firm Bergerson Caswell
	Geologist B. Lomberdi
	Start & Completion Date 18/22/91
	Type of Rig CME75
DET-WELL CONSTRUCTION	_
	Method of Drilling Hollow stem suger
AMMULUS	
1 1 11 11	•
	WELL DOTA
+ 2 10 01 1	Boring Diam. 9"
	Boring Depth 23'
	Casing Diam. 2"
	Screen Diam. 2"
	Screen Interval 11'-21'
5-12-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	
	Screen Type 304 stainless wirewound
	Well Type 304 stainless steel
	Well Construction:
SAID SAID	Filter Pack Silica sand 2'-21'
	Seel W/A
	Grout Enviroplus bentonite
	Lock 80. 2144
	TEST BATA
	Depth to Water Level:
	While Drilling 13.6'
	After Drilling 15.4' (10/28/91)
	After Completion 15.37' (12/82/91
	Rydraulic Conductivity:
20-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	Test Hethod
	hesults
P23::::::::::::::::::::::::::::::::::::	Compests
23 - 17:37:44:45	
-	
	·
	

recycled paper

temple and taxabless

11 - 11

7660:1

558047

Number ZF3000				
Sample Depth From - To (ft)	Slow Count	Recov.	Description	Pemarks
3 - 5	4/5/6/6	19	Dark yellowish brown fine to medium sand, trace fine gravel; loose; dry; grading into grayish brown fine to medium sand, some fine gravel; loose; dry (SW).	
8 - 10	6/2/2/2	15	Yellowish brown fine to medium sand, trace cobbles; loose; dry (SP).	
13 - 15	4/1/1/1	16	Dark yellowish brown medium to coarse sand, some fine sand: loose; saturated: grading into fine to medium sand, little fine gravel (SW).	
18 - 20	10/10/ 16/16	14	Brown medium to coarse gravel, same coarse to fine sand, some small cobbles: medium dense; saturated (GW-SW).	E.O.B.# 23*
			·	
			·	
				·
	<u> </u>			
			· .	
	8 - 10 13 - 25	From - To (ft) Count 3 - 5 4/5/6/6 8 - 10 6/2/2/2 13 - 15 4/1/1/2	From - To (ft) Count (in.) 3 - 5	From - To (ft) Count (in.) Description 1 - 5 4/5/6/6 19 Dark yellowish brown fine to medium sand, trace fine gravel; loose; dry; grading into grayish brown fine to medium sand, some fine gravel; loose; dry (SW). 8 - 10 6/2/2/2 15 Yellowish brown fine to medium sand, trace cobbles; loose; dry (SP). Dark yellowish brown medium to coarse sand, some fine sand; loose; saturated; grading into fine to medium sand, little fine gravel (SW). 18 - 20 10/10/ 14 Brown medium to coarse gravel, s:-e coarse to fine sand, some small cobbles; medium

reject Hene	Mell 110. 19/378	tage 2 of 2

Sample 90.	Sample Depth From - To (ft)	Blow Count	Recev.	Description	Romerks
513	53 - 85	17/23/	12	Brown fine to coarse sand, little fine to medium gravel: extremely dense: saturated (SM).	
514	88 - 70	18/24/ 34/33	16	Brown fine to coarse sand, trace fine gravel: very dense: saturated (SW)	
\$15	93 - 95	50/56/ 52/60	•	Presumably gravel with sand (GP-SP), based on trask in spoos.	'2" send & grevel trash in spoon
516	90 - 100	15/16/ 28/29	17	Brown fine to medium sand: demse: saturated (SP).	Overdrilled 1° 2.0.8. # 101°
		{			
					`
					•
•					

-640 - 1

Project Name Project No.	Conrail site
Date Prepared Prepared by	

LITHOLOGY-		WE	LL CONSTRUCTION
DEPTH-			ANNULUS
	0-		
	20-		
	40-		SAND
	60-	Charles and the second	
	West and the second	And the state of t	
	80-	8 8	
1	100-	Ä Š	•

Well No.	HW37D	
Location	Spraque property	-15' N. of MW37S
Owner	U.S. EPA	
Ground E	levation No date	1
Top of I	nner Casing Elev.	741.36
Drilling	Firm Bergerson	Casvell
Geologis	t L. Lueck	
Start &	Completion Dates	10/28 & 10/29/91
	Rig Gus Pech	
		
Method of	f Drilling <u>Hud</u>	rotary

WELL DATA

Boring Diam.	8-
Boring Depth	101.
Casing Diam.	2"
Screen Diam.	2*
Screen Interv	i 50100.
Screen Type _	304 stainless virewound
Well Type 30	stainless steel
Well Construct	tion:
Filter Pack	Silica sand 87'-100'
Seal H/A	
Grout Env	isoplug bentonite
Lock No.	2344

TEST DATA

While Drilling --- MW375 log

Depth to Water Level:

After Drilling	15.3' (11/03/91)
After Completion	15.96 (12/02/91)
draulic Conducti	· vitv:
Test Method	
	
	
	

554047

recycled paper

7660:L

ecology and environment

Project	Tees.	Comrail site	We 1 1	No.	1943 7D	Face 1 of 2	

Sample No.	Sample Depth From - To (Et)	Blow Count	Recov. (im.)	Cescription	Pomorks
551	3.5 - 5.5	4/3/4/3	10	Yellowish brown medium sand, little coarse to fine sand, trace coarse to fine gravel: loose: moist (SP).	PM378 was drilled from 8'-23' with- out campling; this
552	8.5 - 10.5	2/2/2/2	14	Yellowish brown medium to coarse sand, little fine sand and coarse to fine gravel, trace silt and cobbles: loose; moist (SW).	part of the log is from HW375.
553	13.5 - 15.5	6/16/1/10	16	Brown fine to medium send. Little course sand, trace fine gravel, grading demonst to course sand, little medium sand and course to fine gravel, trace fine sand; medium dense; saturated (SW).	
554	18.5 - 20.5	9/4/1/4	14	Brown fine to medium sand, some coarse sand, trace fine gravel: loose; saturated (SM).	MN375 ends here. E.O.B. 9 23.5"
51	23 - 25	10/37/ 42/35	19	Medium brown fine to coarse send grading down through 3" of fine to medium gravel into fine to coarse send with little fine gravel, trace milt: very dense: saturated (SW).	18/37D sampling begins here 18/28/91. Pig bounced for L'-2'.
52	28 - 30	7/11/ 15/22	14	Medium brown fine to medium sand; trace silt in bottom 3": dense; saturated (SW).	
53	33 - 35	11/11/ 18/17	12	Hodium brown fine sand, trace clay; dense: saturated (SF).	
54	30 - 40	17/13/ 21/25	16	Hedium brown fine to medium sand; little fine gravel in bottom 2"; dense; saturated (SW).	
55	43 - 45	12/12/ 13/36	15	Modium brown fine sand, trace medium sand, trace clay; dense; saturated (SP).	
56	10 - 50	15/26/ 37/37	17	Brown fine to medium send. little fine gravel, trace clay: very dense: seturated (SW).	
\$7	53 - 55	17/21/ 22/21	22	Brown fine sand, trace medium sand, trace silt; dense; seturated (SP).	.
50	38 - 60	17/18/ 17/26	16	Brown fine to medium send, trace fine gravel, trace cearse sand: desse: saturated (SW).	
59	63 - 65	19/27/ 31/34	16	Brown fine to coarse send, some gravel, grading down to fine to medium send, trace gravel; very dense; saturated (SW).	
510	60 - 70	10/36/ 30/40	10	Brown fine to coarse send, some fine to medium gravel: very dense: saturated (SM).	Partially lost circulation around 48'.
511	73 - 75	27/36/ 56/54	18	Brown fine to coarse sand, little fine to medium gravel: extremely dense: saturated (SW).	
512	78 - 80	27/31/ 34/43	10	Brown fine to coarse send, trace gravel; "ery dense; saturated (SW).	

Project No	Well No. MM375 Location Spraque property by LSA3 Owner U.S. EPA Ground Elevation No data Top of Inner Casing Elev. 741.47* Drilling Firm Bergerson Ceswell Geologist C. Carlson & B. Lomberdi Start & Completion Date 10/22/91 Type of Rig CHE75 Method of Drilling Hollow stem auge WELL DATA Boring Diam. 5
Date PreparedPrepared by	Ground Elevation No data Top of Inner Casing Elev. 741.47* Drilling Firm Bergerson Ceswell Geologist C. Carlson & B. Lomberdi Start & Completion Date 10/22/91 Type of Rig CHE75 Method of Drilling Hollow stem auge WELL DATA Boring Diam. 5"
HOLOGY—WELL CONSTRUCTION	Top of Inner Casing Elev. 741.47° Drilling Firm Bergerson Caswell Geologist C. Carlson & B. Lomberdi Start & Completion Date 10/22/91 Type of Rig CHE75 Method of Drilling Hollow stem auge WELL DATA Boring Diam. 5°
HOLOGY—WELL CONSTRUCTION	Top of Inner Casing Elev. 741.47* Drilling Firm Bergerson Caswell Geologist C. Carlson & B. Lomberdi Start & Completion Date 10/22/91 Type of Rig CHE75 Method of Drilling Hollow stem auge WELL DATA Boring Diam. 5"
HOLOGY—WELL CONSTRUCTION	Drilling Firm Bergerson Ceswell Geologist C. Cerlson & B. Lomberdi Start & Completion Date 10/22/91 Type of Rig CHE75 Method of Drilling Hollow stem auge WELL DATA Boring Diam. 5"
HOLOGY WELL CONSTRUCTION	Geologist C. Carlson & B. Lombardi Start & Completion Date 10/22/91 Type of Rig CHE75 Method of Drilling Hollow stem auge WELL DATA Boring Diam. 5"
TH	Start & Completion Date 10/22/91 Type of Rig CHE75 Method of Drilling Hollow stem auge WELL DATA Boring Diam. 5"
TH	Type of RigCHE75 Method of DrillingHollow stem suge WELL DATA Boring Diam5~
TH	Method of Drilling Hollow stem auge WELL DATA Boring Diam. 5"
TH	WELL DATA Soring Diam. 5"
	WELL DATA Soring Diam. 5"
	Soring Diam. 5"
"干】	Soring Diam. 9"
	
i na we i	
	Boring Depth 23.5'
	Casing Diam. 2"
	Screen Diam. 2"
	Screen Interval 12'-22'
	Screen Type 304 stainless wirewound
	Well Type 304 stainless steel
	Well Construction:
	Filter Pack Silica sand 10'-23.5
	Seal N/A
	Grout Enviroplug bentonite
10 SAND	Lock No. 2344
	TEST DATA
	Depth to Water Level:
	While Drilling 14.6
	After Drilling 16.8' (10/29/91)
1	After Completion 16.10 (12/02/91
	Hydraulic Conductivity:
1	Test Method
	Resuits
	Comments
23.5	

recycled paper

7660:1

evology and environment

558047

			Well	No	:M37s
Project	Bunbor .	27 3000			

3.5 - 5.5 4/5/4/5 18 Yellowigh brown medium sand, little course to fine sand, trace course to fine gravel; loose; moist 157). 592 6.5 - 16.5 2/2/2/2 14 Yellowigh brown medium to course sand, little fine sand and course to fine gravel, trace silt and cobbles; loose; moist 1500. 593 13.5 - 15.5 6/10/ 7/10 Brown fine to medium sand, little course sand, trace fine gravel, grading downward to course sand, little medium sand and course to fine gravel, trace fine sand; medium downs; saturated (SW). 584 18.5 - 20.5 9/4/1/4 14 Brown fine to medium sand, some course sand, trace fine gravel; loose; saturated (SW).	Peserke	Pe		ription	D	Recov.	Blev Count	Sample Depth from - To (ft)	Sample So.
fine send and coarse to fine gravel, trace suit and cobbles: loose; moist (SW). 353 13.5 - 15.5 6/10/ 7/10 Srown fine to medium send, little coarse send, trace fine gravel, grading downward to coarse send, little medium send and coarse to fine gravel, trace fine send; medium donse: saturated (SW). S56 18.5 - 28.5 9/4/1/4 14 Brown fine to medium send, some coarse send. E.O.I					fime samd, trace o	10	4/3/4/3	3.5 - 5.5	551
7/10 sand, trace fine gravel, grading downward to course sand, little medium sand and course to fine gravel, trace fine sand; medium donse; saturated (SW). SSG 18.5 - 20.5 9/4/1/4 14 Brown fine to medium sand, some course sand, E.O.I			. trace	to fine gravel, tra	fine send and cost	14	2/2/2/2	0.5 - 10.S	552
			coerse to	vel, grading downwar medium sand and coor me fine sand: medium	sand, trace fine queries sand, little to fine gravel, to	16		13.5 - 15.5	55)
	a. 4 22.5°	E.O.R.				14	9/4/1/4	18.5 - 20.5	554
			g :						
						:			
							1	 	
								. - -	

. .

roject Name Conrail site Well No. MW44D Page 2 of 2 roject Number ZF3000

			T		,
Sample No.	Sample Depth From - To (ft)	Blow Count	Recov.	Description	Remarks
5517	83 - 85	21/40/ 48/50	21	Same as above (SW).	
5\$18	88 - 90	20/26/	20	Same as above (SW).	
\$\$19	93 - 95	25/35/ 46/50	17	Same as above (SW).	
5520	98 - 100	27/28/ 39/39	19	Brown fine to coatse sand, trace fine to medium gravel: very dense; wet (SW).	
5521	103 - 105	27/24/ 60/61	19	Brown medium to coarse sand, little fine to medium gravel, little silt, trace fine sand: extremely dense: wet (SW).	
5522	108 - 110	22/44/ 45/45	17	Same as above (SW),	
5523	113 - 115	24/26/ .56/60	20	Brown medium to coerse sand, little fine to coerse gravel, little silt, trace fine sand; extremely dense; set (SW).	
5524	118 - 120	23/62/	12	Same as above (slightly less silt) (SW).	
5\$25	123 - 125	35/36/ 50/60	14	Same as above (SW).	E.O.B. @ 125'
	 			·	
		·		·	·